Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications

We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers.

[1]  S. Radic,et al.  Phase-sensitive amplification in a fiber. , 2004, Optics express.

[2]  Yasutake Ohishi,et al.  Erbium-doped tellurite glass fibre laser and amplifier , 1997 .

[3]  Gerald Earle Jellison,et al.  Data analysis for spectroscopic ellipsometry , 1993 .

[4]  Tanya M. Monro,et al.  Fabrication of extruded fluoroindate optical fibers , 2013 .

[5]  Tanya M. Monro,et al.  PROGRESS IN MICROSTRUCTURED OPTICAL FIBERS , 2006 .

[6]  Tanya M Monro,et al.  Extrusion of complex preforms for microstructured optical fibers. , 2007, Optics express.

[7]  H. Ebendorff‐Heidepriem,et al.  Extruded tellurite glass and fibers with low OH content for mid-infrared applications , 2012 .

[8]  H. Ebendorff‐Heidepriem,et al.  Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass. , 2009, Optics express.

[9]  J. Lousteau,et al.  Fluorogermanate glass with reduced content of OH-groups for infrared fiber optics , 2009 .

[10]  E. B. Kryukova,et al.  Production of high-purity TeO 2 -ZnO and TeO 2 -WO 3 glasses with the reduced content of ОН-groups , 2007 .

[11]  M J Withford,et al.  Fifty percent internal slope efficiency femtosecond direct-written Tm³⁺:ZBLAN waveguide laser. , 2011, Optics letters.

[12]  Takenobu Suzuki,et al.  Directly draw highly nonlinear tellurite microstructured fiber with diameter varying sharply in a short fiber length. , 2012, Optics express.

[13]  Tanya M. Monro,et al.  Sensing in suspended-core optical fibers , 2011, IEEE Winter Topicals 2011.

[14]  Takenobu Suzuki,et al.  Tellurite microstructure fibers with small hexagonal core for supercontinuum generation. , 2009, Optics express.

[15]  H. Ebendorff‐Heidepriem,et al.  Ternary tellurite glasses for the fabrication of nonlinear optical fibres , 2012 .

[16]  Anne C. Tropper,et al.  Fabrication and optical properties of lead‐germanate glasses and a new class of optical fibers doped with Tm3+ , 1993 .

[17]  F. McCrackin,et al.  Errors arising from surface roughness in ellipsometric measurement of the refractive index of a surface , 1969 .

[18]  M. Shimizu,et al.  Ultra-wide-band tellurite-based fiber Raman amplifier , 2003 .

[19]  D. Clark,et al.  Determination of combined water in glasses by infrared spectroscopy , 1990 .

[20]  I Hartl,et al.  Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide. , 2013, Optics express.

[21]  Animesh Jha,et al.  Tellurite glass lasers operating close to 2 μm , 2010 .

[22]  Tanya M Monro,et al.  Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. , 2011, Optics express.

[23]  Animesh Jha,et al.  Efficient ~2 μm Tm 3+ -doped tellurite fiber laser , 2008 .

[24]  Tanya M. Monro,et al.  Reduction of scattering loss in fluoroindate glass fibers , 2013 .

[25]  T. Komatsu,et al.  AN INTERPRETATION OF OPTICAL PROPERTIES OF OXIDES AND OXIDE GLASSES IN TERMS OF THE ELECTRONIC ION POLARIZABILITY AND AVERAGE SINGLE BOND STRENGTH (REVIEW) , 2010 .

[26]  Heike Ebendorff-Heidepriem,et al.  Highly nonlinear and anomalously dispersive lead silicate glass holey fibers. , 2003, Optics express.

[27]  M Cronin-Golomb,et al.  Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. , 2008, Optics express.

[28]  H. Ebendorff‐Heidepriem,et al.  Luminescence from bismuth-germanate glasses and its manipulation through oxidants , 2012 .

[29]  M. Schmidt,et al.  Supercontinuum generation in chalcogenide-silica step-index fibers. , 2011, Optics express.

[30]  Gerald E. Jellison,et al.  3 – Data Analysis for Spectroscopic Ellipsometry , 2005 .

[31]  Angela B. Seddon,et al.  Fluorotellurite glasses with improved mid-infrared transmission , 2003 .

[32]  P. D. Sarkisov,et al.  Structure of lead germanate glasses by Raman spectroscopy , 2001 .

[33]  Aoxiang Lin,et al.  Fabrication and characterization of a water-free mid-infrared fluorotellurite glass. , 2011, Optics letters.

[34]  J R Taylor,et al.  Direct continuous-wave measurement of n(2) in various types of telecommunication fiber at 1.55 microm. , 1996, Optics letters.

[35]  William H. Dumbaugh,et al.  Nonlinear optical susceptibilities of high‐index glasses , 1989 .

[36]  C. M. Herzinger,et al.  Quantifying the accuracy of ellipsometer systems , 2008 .

[37]  S. Friberg,et al.  Nonlinear optical glasses for ultrafast optical switches , 1987 .

[38]  J. Lousteau,et al.  Investigation on germanium oxide-based glasses for infrared optical fibre development , 2009 .

[39]  O. Bang,et al.  Midinfrared optical rogue waves in soft glass photonic crystal fiber. , 2011, Optics express.

[40]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[41]  Stephen C Warren-Smith,et al.  Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores. , 2009, Optics express.

[42]  Zhidong Yao,et al.  Highly efficient high-power thulium-doped germanate glass fiber laser. , 2007, Optics letters.

[43]  J. Lousteau,et al.  The Structural, Thermal and Optical Analyses ofMulticomponent GeO2 Glasses for Engineering Mid-IR Fibre Chemical Sensing , 2010 .

[44]  S. Harun,et al.  Multi‐wavelength Brillouin fiber laser using a holey fiber and a bismuth‐oxide based erbium‐doped fiber , 2009 .