Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus

[1]  Van Soest,et al.  Use of detergents in the analysis of fibrous feeds. 2. A rapid method for the determination of fiber and lignin. , 1963 .

[2]  K. Vogel,et al.  Influence of lignin on digestibility of forage cell wall material. , 1986, Journal of animal science.

[3]  R. Barnes,et al.  Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra , 1989 .

[4]  John S. Shenk,et al.  Population Definition, Sample Selection, and Calibration Procedures for Near Infrared Reflectance Spectroscopy , 1991 .

[5]  John S. Shenk,et al.  Populations Structuring of Near Infrared Spectra and Modified Partial Least Squares Regression , 1991 .

[6]  J. Greef,et al.  Syntaxonomy of Miscanthus x giganteus Greef et Deu , 1993 .

[7]  R. Barnes,et al.  Use of near infrared reflectance spectroscopy to predict and compare the composition of carcass samples from young steers , 1997 .

[8]  John Clifton-Brown,et al.  The thermal response of leaf extension rate in genotypes of the C4-grass Miscanthus: an important factor in determining the potential productivity of different genotypes , 1997 .

[9]  B. Jenkins,et al.  Combustion properties of biomass , 1998 .

[10]  John Clifton-Brown,et al.  Miscanthus : European experience with a novel energy crop , 2000 .

[11]  John Clifton-Brown,et al.  The modelled productivity of Miscanthus×giganteus (GREEF et DEU) in Ireland. , 2000 .

[12]  R. Dixon,et al.  The biosynthesis of monolignols: a "metabolic grid", or independent pathways to guaiacyl and syringyl units? , 2001, Phytochemistry.

[13]  D. G. Christian,et al.  The effect of delayed harvest on the yield and nutrient composition of reed canary grass (Phalaris arundinacea). , 2001 .

[14]  Trevor R. Hodkinson,et al.  Nomenclature of Miscanthus x giganteus (Poaceae) , 2001 .

[15]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[16]  Wout Boerjan,et al.  Stacking transgenes in forest trees. , 2003, Trends in plant science.

[17]  Uffe Jørgensen,et al.  Environment and harvest time affects the combustion qualities of Miscanthus genotypes , 2003 .

[18]  MICHAEL B. Jones,et al.  Miscanthus for Renewable Energy Generation: European Union Experience and Projections for Illinois , 2004 .

[19]  Thomas B. Voigt,et al.  A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water , 2004 .

[20]  B. Ahring,et al.  Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass , 2004, Applied Microbiology and Biotechnology.

[21]  S. Anthony,et al.  Identifying the yield potential of Miscanthus x giganteus: an assessment of the spatial and temporal variability of M. x giganteus biomass productivity across England and Wales , 2004 .

[22]  Robert P. Chambers,et al.  Red oak wood derived inhibitors in the ethanol fermentation of xylose byPichia stipitis CBS 5776 , 1985, Biotechnology Letters.

[23]  M. Sticklen,et al.  Plant genetic engineering to improve biomass characteristics for biofuels. , 2006, Current opinion in biotechnology.

[24]  John Clifton-Brown,et al.  Genotypic variation in cold tolerance influences the yield of Miscanthus , 2006 .

[25]  John Clifton-Brown,et al.  Carbon mitigation by the energy crop, Miscanthus , 2007 .

[26]  W. Vermerris Genetic improvement of bioenergy crops , 2008 .

[27]  Jing-Ke Weng,et al.  Improvement of biomass through lignin modification. , 2008, The Plant journal : for cell and molecular biology.

[28]  Ruth Sanderson,et al.  Miscanthus: breeding our way to a better future , 2008 .

[29]  M. Mutwil,et al.  Laying down the bricks: logistic aspects of cell wall biosynthesis. , 2008, Current opinion in plant biology.

[30]  Wilfred Vermerris,et al.  Miscanthus: Genetic resources and breeding potential to enhance bioenergy production , 2008 .

[31]  Iain S. Donnison,et al.  The effect of lignin and inorganic species in biomass on pyrolysis oil yields, quality and stability , 2008 .

[32]  Staffan Persson,et al.  Cellulose synthesis: a complex complex. , 2008, Current opinion in plant biology.

[33]  A. Hastings,et al.  Future energy potential of Miscanthus in Europe , 2009 .

[34]  Matthew J. Aylott,et al.  Greenhouse gas emissions from four bioenergy crops in England and Wales: Integrating spatial estimates of yield and soil carbon balance in life cycle analyses , 2009 .

[35]  B. Sundberg,et al.  KORRIGAN1 and its aspen homolog PttCel9A1 decrease cellulose crystallinity in Arabidopsis stems. , 2009, Plant & cell physiology.

[36]  A. Monti,et al.  Cradle-to-farm gate life cycle assessment in perennial energy crops , 2009 .

[37]  Enrico Bonari,et al.  Comparison of Arundo donax L. and Miscanthus x giganteus in a long-term field experiment in Central Italy: Analysis of productive characteristics and energy balance , 2009 .

[38]  J. Ralph,et al.  Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability , 2010, BMC Plant Biology.

[39]  R. Zhong,et al.  Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. , 2009, Plant & cell physiology.

[40]  Seth Debolt,et al.  Genetic modification in cellulose‐synthase reduces crystallinity and improves biochemical conversion to fermentable sugar , 2009 .

[41]  Peter N. Mascia,et al.  Plant biotechnology for sustainable production of energy and co-products , 2010 .

[42]  John Clifton-Brown,et al.  Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock , 2010 .

[43]  Ziv Shani,et al.  Plant cell wall reconstruction toward improved lignocellulosic production and processability , 2010 .

[44]  Gordon G. Allison,et al.  Designing Biomass Crops with Improved Calorific Content and Attributes for Burning: a UK Perspective , 2010 .

[45]  John Ralph,et al.  Advances in modifying lignin for enhanced biofuel production. , 2010, Current opinion in plant biology.

[46]  A V Bridgwater,et al.  Miscanthus as a feedstock for fast-pyrolysis: does agronomic treatment affect quality? , 2010, Bioresource technology.