MicroRNA-31 mediated by interferon regulatory factor 7 signaling facilitates control of Mycobacterium tuberculosis infection.

[1]  G. Zeng,et al.  Nanocages engineered from Bacillus Calmette-Guerin facilitate protective Vγ2Vδ2 T cell immunity against Mycobacterium tuberculosis infection , 2022, Journal of Nanobiotechnology.

[2]  G. Zeng,et al.  The role of gut microbiota in infectious diseases. , 2022, WIREs mechanisms of disease.

[3]  W. Jacobs,et al.  Immunization of Vγ2Vδ2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates , 2019, Proceedings of the National Academy of Sciences.

[4]  W. Sha,et al.  MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy , 2018, Nature Communications.

[5]  K. Moore,et al.  Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism , 2016, Nature Immunology.

[6]  Xiaohui Xie,et al.  Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection , 2015, Proceedings of the National Academy of Sciences.

[7]  I. Orme,et al.  The balance between protective and pathogenic immune responses in the TB-infected lung , 2014, Nature Immunology.

[8]  A. Sher,et al.  Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk , 2014, Nature.

[9]  K. Dheda,et al.  Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. , 2014, The Lancet. Respiratory medicine.

[10]  Alimuddin Zumla,et al.  Totally-drug-resistant tuberculosis: hype versus hope. , 2014, The Lancet. Respiratory medicine.

[11]  A. Rothchild,et al.  In search of a new paradigm for protective immunity to TB , 2014, Nature Reviews Microbiology.

[12]  E. Rubin Troubles with tuberculosis prevention. , 2014, The New England journal of medicine.

[13]  J. Schreiber,et al.  MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. , 2013, The Journal of clinical investigation.

[14]  H. Jomaa,et al.  Phosphoantigen/IL2 Expansion and Differentiation of Vγ2Vδ2 T Cells Increase Resistance to Tuberculosis in Nonhuman Primates , 2013, PLoS pathogens.

[15]  L. Ramakrishnan,et al.  TNF Dually Mediates Resistance and Susceptibility to Mycobacteria via Mitochondrial Reactive Oxygen Species , 2013, Cell.

[16]  Boping Zhou,et al.  Tim-3-Expressing CD4+ and CD8+ T Cells in Human Tuberculosis (TB) Exhibit Polarized Effector Memory Phenotypes and Stronger Anti-TB Effector Functions , 2012, PLoS pathogens.

[17]  J. Ernst The immunological life cycle of tuberculosis , 2012, Nature Reviews Immunology.

[18]  J. Ernst,et al.  Tuberculosis pathogenesis and immunity. , 2012, Annual review of pathology.

[19]  Peter D. Crompton,et al.  Therapeutic PD-L1 and LAG-3 blockade rapidly clears established blood-stage Plasmodium infection , 2011, Nature Immunology.

[20]  G. Zeng,et al.  Membrane-Bound IL-22 after De Novo Production in Tuberculosis and Anti-Mycobacterium tuberculosis Effector Function of IL-22+ CD4+ T Cells , 2011, The Journal of Immunology.

[21]  T. Graeber,et al.  MicroRNA-21 targets the vitamin D-dependent antimicrobial pathway in leprosy , 2011, Nature Medicine.

[22]  S. Almo,et al.  Programmed death-1 (PD-1)–deficient mice are extraordinarily sensitive to tuberculosis , 2010, Proceedings of the National Academy of Sciences.

[23]  William R. Jacobs,et al.  A Critical Role for CD8 T Cells in a Nonhuman Primate Model of Tuberculosis , 2009, PLoS pathogens.

[24]  A. Cooper,et al.  Cell-mediated immune responses in tuberculosis. , 2009, Annual review of immunology.

[25]  B. Haynes,et al.  Severe tuberculosis induces unbalanced up-regulation of gene networks and overexpression of IL-22, MIP-1alpha, CCL27, IP-10, CCR4, CCR5, CXCR3, PD1, PDL2, IL-3, IFN-beta, TIM1, and TLR2 but low antigen-specific cellular responses. , 2008, The Journal of infectious diseases.

[26]  S. Kaufmann Envisioning future strategies for vaccination against tuberculosis , 2006, Nature Reviews Immunology.

[27]  K. Honda,et al.  Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction , 2005, Nature.

[28]  Hideo Negishi,et al.  IRF-7 is the master regulator of type-I interferon-dependent immune responses , 2005, Nature.

[29]  Gregory A. Taylor,et al.  Immune Control of Tuberculosis by IFN-γ-Inducible LRG-47 , 2003, Science.

[30]  T. Taniguchi,et al.  A weak signal for strong responses: interferon-alpha/beta revisited , 2001, Nature Reviews Molecular Cell Biology.

[31]  I. Orme,et al.  Disseminated tuberculosis in interferon gamma gene-disrupted mice , 1993, The Journal of experimental medicine.

[32]  David G. Russell,et al.  Who puts the tubercle in tuberculosis? , 2007, Nature Reviews Microbiology.

[33]  N. Letvin,et al.  Immune gene networks of mycobacterial vaccine-elicited cellular responses and immunity. , 2007, The Journal of infectious diseases.