Opinion mining with the SentWordNet lexical resource

[1]  Yiming Yang,et al.  High-performing feature selection for text classification , 2002, CIKM '02.

[2]  Gregory Piatetsky-Shapiro,et al.  Knowledge Discovery in Real Databases: A Report on the IJCAI-89 Workshop , 1991, AI Mag..

[3]  Gregory Piatetsky-Shapiro,et al.  The KDD process for extracting useful knowledge from volumes of data , 1996, CACM.

[4]  Sanjeev R. Kulkarni,et al.  Learning Pattern Classification - A Survey , 1998, IEEE Trans. Inf. Theory.

[5]  Ben Shneiderman,et al.  The eyes have it: a task by data type taxonomy for information visualizations , 1996, Proceedings 1996 IEEE Symposium on Visual Languages.

[6]  Tao Luo,et al.  Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization , 2004, Data Mining and Knowledge Discovery.

[7]  Marti A. Hearst Untangling Text Data Mining , 1999, ACL.

[8]  Thorsten Joachims,et al.  Text Categorization with Support Vector Machines: Learning with Many Relevant Features , 1998, ECML.

[9]  Yorick Wilks,et al.  Word Sense Disambiguation using Optimised Combinations of Knowledge Sources , 1998, COLING-ACL.

[10]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL.

[11]  Khurshid Ahmad,et al.  Sentiment Polarity Identification in Financial News: A Cohesion-based Approach , 2007, ACL.

[12]  I. Nonaka,et al.  The Concept of “Ba”: Building a Foundation for Knowledge Creation , 1998 .

[13]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[14]  Sholom M. Weiss,et al.  Automated learning of decision rules for text categorization , 1994, TOIS.

[15]  Jeonghee Yi,et al.  Sentiment analysis: capturing favorability using natural language processing , 2003, K-CAP '03.

[16]  Katherine J. Miller,et al.  Adjectives in WordNet , 1990 .

[17]  Yonatan Aumann,et al.  Knowledge Management: A Text Mining Approach , 1998, PAKM.

[18]  Janyce Wiebe Identifying Subjective Characters in Narrative , 1990, COLING.

[19]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[20]  Jochen Dörre,et al.  Text mining: finding nuggets in mountains of textual data , 1999, KDD '99.

[21]  Rada Mihalcea,et al.  Word Sense and Subjectivity , 2006, ACL.

[22]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[23]  Yang Huang,et al.  A novel hybrid approach to automated negation detection in clinical radiology reports. , 2007, Journal of the American Medical Informatics Association : JAMIA.

[24]  Carlo Strapparava,et al.  Making Computers Laugh: Investigations in Automatic Humor Recognition , 2005, HLT.

[25]  San Cristóbal Mateo,et al.  The Lack of A Priori Distinctions Between Learning Algorithms , 1996 .

[26]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL 2006.

[27]  K. D. Joshi,et al.  Description and analysis of existing knowledge management frameworks , 1999, Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers.

[28]  Janyce Wiebe,et al.  Learning Subjective Language , 2004, CL.

[29]  Peter F. Drucker,et al.  The Information That Executives Truly Need , 1995 .

[30]  Yiming Yang,et al.  A Comparative Study on Feature Selection in Text Categorization , 1997, ICML.

[31]  Mark S. Ackerman,et al.  Just talk to me: a field study of expertise location , 1998, CSCW '98.

[32]  Laurence Prusak,et al.  Where did knowledge management come from? , 2001, IBM Syst. J..

[33]  Sridhar Ramaswamy,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD '00.

[34]  Rajeev Rastogi,et al.  Efficient algorithms for mining outliers from large data sets , 2000, SIGMOD 2000.

[35]  George H. John,et al.  Building long/short portfolios using rule induction , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[36]  Joshua Alspector,et al.  SVM-based Filtering of E-mail Spam with Content-specic Misclassication Costs , 2001 .

[37]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[38]  Christopher D. Manning,et al.  Enriching the Knowledge Sources Used in a Maximum Entropy Part-of-Speech Tagger , 2000, EMNLP.

[39]  Toshinori Munakata,et al.  Knowledge discovery , 1999, Commun. ACM.

[40]  George M. Mohay,et al.  Gender-preferential text mining of e-mail discourse , 2002, 18th Annual Computer Security Applications Conference, 2002. Proceedings..

[41]  Evangelos Simoudis,et al.  Mining business databases , 1996, CACM.

[42]  George Forman,et al.  Pragmatic text mining: minimizing human effort to quantify many issues in call logs , 2006, KDD '06.

[43]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[44]  Ramakrishnan Srikant,et al.  Discovering Trends in Text Databases , 1997, KDD.

[45]  Ulrich Güntzer,et al.  Algorithms for association rule mining — a general survey and comparison , 2000, SKDD.

[46]  D. Wolpert The Supervised Learning No-Free-Lunch Theorems , 2002 .

[47]  David Haussler,et al.  Mining scientific data , 1996, CACM.

[48]  Prakash M. Nadkarni,et al.  Research Paper: Use of General-purpose Negation Detection to Augment Concept Indexing of Medical Documents: A Quantitative Study Using the UMLS , 2001, J. Am. Medical Informatics Assoc..

[49]  Wendy W. Chapman,et al.  Evaluation of negation phrases in narrative clinical reports , 2001, AMIA.

[50]  Yiming Ma,et al.  Web for data mining: organizing and interpreting the discovered rules using the Web , 2000, SKDD.

[51]  Jonathon Read,et al.  Using Emoticons to Reduce Dependency in Machine Learning Techniques for Sentiment Classification , 2005, ACL.

[52]  R. McDermott Why Information Technology Inspired but Cannot Deliver Knowledge Management , 1999 .

[53]  Clyde W. Holsapple,et al.  Knowledge and Its Attributes , 2004 .

[54]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[55]  Tony A. Meyer,et al.  SpamBayes: Effective open-source, Bayesian based, email classification system , 2004, CEAS.

[56]  I. Nonaka The knowledge creating company". Harvard Business Review : . , 1991 .

[57]  Machdel C. Matthee,et al.  Differentiating data- and text-mining terminology , 2003 .

[58]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[59]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[60]  Yu-Chi Ho,et al.  On pattern classification algorithms introduction and survey , 1968 .

[61]  Xin Jin,et al.  Sensitive webpage classification for content advertising , 2007, ADKDD '07.

[62]  Xiao Li,et al.  Using rule induction methods to analyze gene expression data , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[63]  Sara Mendes,et al.  Adjectives in WordNet.PT , 2002 .

[64]  Gregory Piatetsky-Shapiro,et al.  Data mining and knowledge discovery 1996 to 2005: overcoming the hype and moving from “university” to “business” and “analytics” , 2007, Data Mining and Knowledge Discovery.

[65]  G. Krogh Care in Knowledge Creation , 1998 .

[66]  Nicholas M. Allix Epistemology and Knowledge Management Concepts and Practices , 2003 .

[67]  Marie-Francine Moens,et al.  Automatic Sentiment Analysis in On-line Text , 2007, ELPUB.

[68]  Soo-Min Kim,et al.  Determining the Sentiment of Opinions , 2004, COLING.

[69]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[70]  Gregory Piatetsky-Shapiro,et al.  Knowledge discovery in databases: 10 years after , 2000, SKDD.

[71]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery in Databases , 1996, AI Mag..

[72]  Nigel Collier,et al.  Sentiment Analysis using Support Vector Machines with Diverse Information Sources , 2004, EMNLP.

[73]  野中 郁次郎,et al.  The knowledge-creating company , 2008 .

[74]  Michael L. Gargano,et al.  Data mining - a powerful information creating tool , 1999, OCLC Syst. Serv..

[75]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[76]  Atreyi Kankanhalli,et al.  The role of IT in successful knowledge management initiatives , 2003, CACM.

[77]  James Callaghan,et al.  The Role of IT , 2002 .

[78]  M. Zeleny Management support systems: Towards integrated knowledge management , 1987 .

[79]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[80]  Tom Fawcett,et al.  Robust Classification for Imprecise Environments , 2000, Machine Learning.

[81]  P. Quintas,et al.  Knowledge management: A strategic agenda , 1997 .

[82]  Ben Shneiderman,et al.  Dynamic querying for pattern identification in microarray and genomic data , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[83]  Ingo Mierswa,et al.  YALE: rapid prototyping for complex data mining tasks , 2006, KDD '06.

[84]  W. Arthur,et al.  Increasing returns and the new world of business. , 1996, Harvard business review.

[85]  Alan D. Marwick,et al.  Knowledge management technology , 2001, IBM Syst. J..

[86]  Andreas Hotho,et al.  A Brief Survey of Text Mining , 2005, LDV Forum.

[87]  Ido Dagan,et al.  Knowledge Discovery in Textual Databases (KDT) , 1995, KDD.

[88]  Mani R. Subramani,et al.  A framework of knowledge management systems: issues and challenges for theory and practice , 2000, ICIS.

[89]  Jennifer E. Rowley,et al.  The wisdom hierarchy: representations of the DIKW hierarchy , 2007, J. Inf. Sci..

[90]  Yves Lechevallier,et al.  Software - Data Mining , 2011 .

[91]  Jean-Paul A. Barthès,et al.  Knowledge Management , 1994, Encyclopedia of Database Systems.

[92]  Dorothy E. Leidner,et al.  Knowledge Management Systems: Issues, Challenges, and Benefits , 1999, Commun. Assoc. Inf. Syst..

[93]  Carlos Ordonez,et al.  Association rule discovery with the train and test approach for heart disease prediction , 2006, IEEE Transactions on Information Technology in Biomedicine.

[94]  Ying Zhao,et al.  Effective document clustering for large heterogeneous law firm collections , 2005, International Conference on Artificial Intelligence and Law.

[95]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[96]  Ido Dagan,et al.  Mining Text Using Keyword Distributions , 1998, Journal of Intelligent Information Systems.

[97]  Morten T. Hansen,et al.  What's your strategy for managing knowledge? , 1999, Harvard business review.

[98]  Tetsuya Nasukawa,et al.  Text analysis and knowledge mining system , 2001, IBM Syst. J..

[99]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[100]  Andrew McCallum,et al.  A comparison of event models for naive bayes text classification , 1998, AAAI 1998.

[101]  Peter Clark,et al.  The CN2 Induction Algorithm , 1989, Machine Learning.

[102]  Neil R. Smalheiser,et al.  Artificial Intelligence An interactive system for finding complementary literatures : a stimulus to scientific discovery , 1995 .

[103]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[104]  Harris Drucker,et al.  Support vector machines for spam categorization , 1999, IEEE Trans. Neural Networks.

[105]  G. Piatetsky-Shapiro,et al.  The data-mining industry coming of age , 1999, IEEE Intell. Syst..

[106]  Jefferson Provost,et al.  Na ive-Bayes vs. Rule-Learning in Classification of Email , 1999 .

[107]  Kevin Chen-Chuan Chang,et al.  Editorial: special issue on web content mining , 2004, SKDD.

[108]  Philip J. Hayes,et al.  CONSTRUE/TIS: A System for Content-Based Indexing of a Database of News Stories , 1990, IAAI.

[109]  Michael J. Pazzani,et al.  HYDRA: A Noise-tolerant Relational Concept Learning Algorithm , 1993, IJCAI.

[110]  Balaji Padmanabhan,et al.  GHIC: a hierarchical pattern-based clustering algorithm for grouping Web transactions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[111]  Anne Kao,et al.  User assisted text classification and knowledge management , 2003, CIKM '03.

[112]  Janyce Wiebe,et al.  Development and Use of a Gold-Standard Data Set for Subjectivity Classifications , 1999, ACL.

[113]  Tong Zhang,et al.  Text Mining: Predictive Methods for Analyzing Unstructured Information , 2004 .

[114]  Vibhu O. Mittal,et al.  Comparative Experiments on Sentiment Classification for Online Product Reviews , 2006, AAAI.

[115]  Liam Fahey,et al.  The Eleven Deadliest Sins of Knowledge Management , 1998 .

[116]  Periklis Andritsos,et al.  Overview and semantic issues of text mining , 2007, SGMD.

[117]  Roberto Basili,et al.  Complex Linguistic Features for Text Classification: A Comprehensive Study , 2004, ECIR.

[118]  Rayid Ghani,et al.  Text mining for product attribute extraction , 2006, SKDD.

[119]  David M. Pennock,et al.  Mining the peanut gallery: opinion extraction and semantic classification of product reviews , 2003, WWW '03.

[120]  Mirella Lapata,et al.  Proceedings of EMNLP 2004 , 2004 .

[121]  Michael Gamon,et al.  Sentiment classification on customer feedback data: noisy data, large feature vectors, and the role of linguistic analysis , 2004, COLING.

[122]  Franco Salvetti,et al.  Automatic Opinion Polarity Classification of Movie Reviews , 2004 .

[123]  Amrit Tiwana,et al.  The Knowledge Management Toolkit: Practical Techniques for Building a Knowledge Management System with Cdrom , 1999 .

[124]  George Forman,et al.  An Extensive Empirical Study of Feature Selection Metrics for Text Classification , 2003, J. Mach. Learn. Res..

[125]  Ed Calmull How Pixar Fosters Collective Creativity , 2008 .

[126]  David J. Teece,et al.  The Dynamic Capabilities of Firms , 2003 .

[127]  S. Debowski Knowledge Management , 2005 .

[128]  Thorsten Brants,et al.  TnT – A Statistical Part-of-Speech Tagger , 2000, ANLP.

[129]  Wei-Yin Loh,et al.  A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms , 2000, Machine Learning.

[130]  Simeon J. Simoff,et al.  Customer Analytics Projects: Addressing Existing Problems with a Process that Leads to Success , 2007, AusDM.

[131]  Ben Shneiderman,et al.  Discovering interesting usage patterns in text collections: integrating text mining with visualization , 2007, CIKM '07.

[132]  Le Gruenwald,et al.  A survey of data mining and knowledge discovery software tools , 1999, SKDD.

[133]  Joel Waldfogel,et al.  Introduction , 2010, Inf. Econ. Policy.

[134]  F. Peter,et al.  THE INFORMATION EXECUTIVES TRULY NEED , 1992 .

[135]  Dorothy E. Leidner,et al.  Review: Knowledge Management and Knowledge Management Systems: Conceptual Foundations and Research Issues , 2001, MIS Q..

[136]  Thorsten Joachims,et al.  A Probabilistic Analysis of the Rocchio Algorithm with TFIDF for Text Categorization , 1997, ICML.

[137]  Usama M. Fayyad,et al.  Automated cataloging and analysis of sky survey image databases: the SKICAT system , 1993, CIKM '93.

[138]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[139]  Fred L. Drake,et al.  The Python Language Reference Manual , 1999 .

[140]  Ian Witten,et al.  Data Mining , 2000 .

[141]  Eric Brill,et al.  Reducing the human overhead in text categorization , 2006, KDD '06.

[142]  K. D. Joshi,et al.  Knowledge manipulation activities: results of a Delphi study , 2002, Inf. Manag..

[143]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[144]  Raymond T. Ng,et al.  Algorithms for Mining Distance-Based Outliers in Large Datasets , 1998, VLDB.

[145]  Thomas Reinartz,et al.  CRISP-DM 1.0: Step-by-step data mining guide , 2000 .

[146]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[147]  Carlo Strapparava,et al.  WordNet Affect: an Affective Extension of WordNet , 2004, LREC.

[148]  野中 郁次郎,et al.  The Knowledge-Creating Company: How , 1995 .

[149]  W. Scott Spangler,et al.  The integration of business intelligence and knowledge management , 2002, IBM Syst. J..

[150]  Ali F. Farhoomand,et al.  Managerial information overload , 2002, CACM.

[151]  Mary Bradley,et al.  Working Knowledge: How Organizations Manage What They Know , 2000 .

[152]  Sholom M. Weiss,et al.  Predictive data mining - a practical guide , 1997 .

[153]  Carlo Strapparava,et al.  The Affective Weight of Lexicon , 2006, LREC.

[154]  F. Scientific Online Shopping , 1998, Current Biology.

[155]  Richard T. Herschel,et al.  Knowledge management and business intelligence: the importance of integration , 2005, J. Knowl. Manag..

[156]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.