Extended MLLT for Gaussian Mixture Models

Prior to publication, please maintain the enclosed paper in confidence and use it only for purposes of evaluating the merit of the proposed paper, and other activities reasonably related to the review process, and please do not make it available, in whole or in part, to the public. The authors thanks IEEE Transactions in Speech and Audio Processing for their courtesy and professionalism in this matter.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Mark J. F. Gales,et al.  Factored Semi-Tied Covariance Matrices , 2000, NIPS.

[3]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[4]  Ramesh A. Gopinath,et al.  Low-Resource Speech Recognition of 500-Word Vocabularies , 2001 .

[5]  James H. Martin,et al.  Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition , 2000 .

[6]  J. Jensen Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .

[7]  L. Baum,et al.  An inequality with applications to statistical estimation for probabilistic functions of Markov processes and to a model for ecology , 1967 .

[8]  Peter Norvig Chapter 19 – Introduction to Natural Language , 1992 .

[9]  Ramesh A. Gopinath,et al.  Multiple linear transforms , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[10]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[11]  Chin-Hui Lee,et al.  Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains , 1994, IEEE Trans. Speech Audio Process..

[12]  Mark J. F. Gales,et al.  Semi-tied covariance matrices for hidden Markov models , 1999, IEEE Trans. Speech Audio Process..

[13]  Ramesh A. Gopinath,et al.  Maximum likelihood modeling with Gaussian distributions for classification , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[14]  P. Ladefoged A course in phonetics , 1975 .

[15]  Louis A. Liporace,et al.  Maximum likelihood estimation for multivariate observations of Markov sources , 1982, IEEE Trans. Inf. Theory.

[16]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[17]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[18]  Bhuvana Ramabhadran,et al.  Factor analysis invariant to linear transformations of data , 1998, ICSLP.

[19]  Dorothy T. Thayer,et al.  EM algorithms for ML factor analysis , 1982 .

[20]  Daniel Jurafsky,et al.  An introduction to natural language processing , 2000 .

[21]  George Saon,et al.  Maximum likelihood discriminant feature spaces , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[22]  Volker Tresp,et al.  Improved Gaussian Mixture Density Estimates Using Bayesian Penalty Terms and Network Averaging , 1995, NIPS.

[23]  Andreas G. Andreou,et al.  Heteroscedastic discriminant analysis and reduced rank HMMs for improved speech recognition , 1998, Speech Commun..

[24]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[25]  Mark J. F. Gales,et al.  Maximum likelihood linear transformations for HMM-based speech recognition , 1998, Comput. Speech Lang..

[26]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[27]  J. Magnus,et al.  Matrix Differential Calculus with Applications in Statistics and Econometrics , 1991 .

[28]  R. Gopinath CONSTRAINED MAXIMUM LIKELIHOOD MODELING WITH GAUSSIAN DISTRIBUTIONS , 2001 .