Optical properties and electronic structure of the Cu–Zn brasses

The color of Cu–Zn brasses range from the red of copper through bright yellow to grey-silver as the Zn content increases. Here we examine the mechanism by which these color changes occur. The optical properties of this set of alloys has been calculated using density functional theory (DFT) and compared to experimental spectroscopy measurements. The optical response of the low Zn content α-brasses is shown to have a distinctly different origin to that in the higher content β′, γ and e-brasses. The response of β′-brass is unique in that it is strongly influenced by an overdamped plasmon excitation and this alloy will also have a strong surface plasmon response.

[1]  Keith H. Johnson,et al.  Plasma–Interband Coupling in β′ CuZn† , 1964 .

[2]  S. Banik,et al.  Electronic structure of - and -brass , 2008 .

[3]  C. Janiak,et al.  Synthesis of Cu, Zn and Cu/Zn brass alloy nanoparticles from metal amidinate precursors in ionic liquids or propylene carbonate with relevance to methanol synthesis. , 2014, Nanoscale.

[4]  J. Janak,et al.  Self-consistent band structure of orderedβ-brass , 1974 .

[5]  S. K. Joshi,et al.  Electronic Band Structure of a-Brass , 1969 .

[6]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[7]  P. Schattschneider,et al.  Local field effects in the electron energy loss spectra of rutile TiO2. , 2002, Physical review letters.

[8]  R. Hummel,et al.  Modulated Reflectivity Measurements on α-phase Cu-Zn, Cu-Al, Cu-Ga, and Cu-Ge Alloys , 1973 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  Dynamical excitonic effects in metals and semiconductors. , 2003, Physical review letters.

[11]  R. E. Schaak,et al.  Solution Synthesis of Nanocrystalline M−Zn (M = Pd, Au, Cu) Intermetallic Compounds via Chemical Conversion of Metal Nanoparticle Precursors , 2007 .

[12]  K. H. Johnson,et al.  Electronic Structure of Ordered Beta Brass , 1965 .

[13]  F. Arlinghaus Energy Bands and Fermi Surface of Ordered β Brass , 1969 .

[14]  H. W. King,et al.  The lattice spacing relationships in H.C.P. ϵ and η phases in the systems Cu-Zn, Ag-Zn; Au-Zn and Ag-Cd☆ , 1962 .

[15]  R. E. Watson,et al.  Complex energy bands inα-brass , 1974 .

[16]  E. D. Verink,et al.  The Dezincification of Alpha and Beta Brasses , 1972 .

[17]  Effects of short-range order on the electronic structure of disordered metallic systems , 2004, cond-mat/0411347.

[18]  Dimitri D. Vaughn,et al.  Solution chemistry synthesis, morphology studies, and optical properties of five distinct nanocrystalline Au–Zn intermetallic compounds , 2010 .

[19]  L. Muldawer Spectral Reflectivity as a Function of Temperature of β -Brass Type Alloys , 1962 .

[20]  M. A. Biondi,et al.  Band Structure of Noble Metal Alloys: Optical Absorption inα-Brasses at 4.2°K , 1959 .

[21]  J. A. Holbrook,et al.  Compositional modulation of CuZn, CuAl and CuNi alloys , 1973 .

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  M. Cortie,et al.  Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. , 2011, Chemical reviews.

[24]  V. Keast An introduction to the calculation of valence EELS: quantum mechanical methods for bulk solids. , 2013, Micron.

[25]  Ji Zhou,et al.  Optical dielectric behaviors of copper zinc alloy thin films , 2012 .

[26]  H. Skriver,et al.  Band Structure and Fermi-Surface Properties of Ordered β -Brass , 1973 .

[27]  Peter L. Walters,et al.  Connecting the chemical and physical viewpoints of what determines structure: from 1-D chains to γ-brasses. , 2011, Chemical reviews.

[28]  Giovanni Onida,et al.  Plane-wave DFT-LDA calculation of the electronic structure and absorption spectrum of copper , 2001, cond-mat/0108535.

[29]  Giovanni Onida,et al.  First-principles calculation of the plasmon resonance and of the reflectance spectrum of silver in the GW approximation , 2002 .

[30]  I. I. Sasovskaya,et al.  Optical properties of α- and β-CuZn brasses in the region of quantum absorption , 1986 .

[31]  Giovanni Onida,et al.  Quasiparticle electronic structure of copper in the GW approximation. , 2002, Physical review letters.

[32]  M. Farbod,et al.  Single phase synthesis of γ-brass (Cu5Zn8) nanoparticles by electric arc discharge method and investigation of their order–disorder transition temperature , 2014 .

[33]  Jorge O. Sofo,et al.  Linear optical properties of solids within the full-potential linearized augmented planewave method , 2004, Comput. Phys. Commun..

[34]  R. Fischer,et al.  Nano-Brass: Bimetallic Copper/Zinc Colloids by a Nonaqueous Organometallic Route Using [Cu(OCH(Me)CH2NMe2)2] and Et2Zn as Precursors , 2003 .

[35]  Darrick J. Williams,et al.  Atomic Distributions in the γ-Brass Structure of the Cu−Zn System: A Structural and Theoretical Study , 2007 .

[36]  Rüdiger Mack,et al.  FIZ Karlsruhe , 2005, Inf. Serv. Use.

[37]  R. Asahi,et al.  Verification of Hume-Rothery electron concentration rule inCu5Zn8andCu9Al4γbrasses byab initioFLAPW band calculations , 2005 .

[38]  H. P. Myers,et al.  The Optical Spectra of β' Brass and the Heusler Alloys Cu2MnAl and Cu2MnIn , 1975 .

[39]  K. H. Johnson,et al.  Electronic Structure of Alpha Brass , 1967 .