A Frequency-Selective Broadband Low-Noise Amplifier With Double-Loop Transformer Feedback

A frequency-selective, power-to-current ( P- I) broadband low-noise amplifier (FS-LNA) is presented. The use of global and/or local feedback in tandem is investigated, where monolithic transformers realize the feedback loops. Superior performance is realized when global and local feedbacks are interwound. A cascode gain stage with a current-to-current positive feedback loop to boost the power gain and a current-to-current negative feedback loop for impedance and/or noise matching is implemented in 90 nm RF-CMOS. The FS-LNA also provides at least 20 dB RF signal rejection at frequencies below the L-band (includes GPS and GSM carriers). The measured gain, noise figure and 1-dB gain compression point of the LNA from 3.5-9.25 GHz are 15±3 dB, 2.4 ±0.8 dB and -17.5 ±2.5 dBm, respectively. The chip area of the LNA is 0.7 × 0.8 mm2. The FS-LNA consumes 9.6 mW from a 0.8 V power supply. It is most suitable for sub-1 V single-cell integrated radios and can be used for multiband/multistandard wireless technologies, such as broadband impulse-radio ultra-wideband (IR-UWB) and frequency modulated (FM) UWB.

[1]  S. Bagga,et al.  A band-reject ir-UWB LNA with 20 dB WLAN suppression in 0.13 μm CMOS , 2008, 2008 IEEE Asian Solid-State Circuits Conference.

[2]  D. Pozar Microwave Engineering , 1990 .

[3]  Wouter A. Serdijn,et al.  A frequency-selective nested dual-loop broadband low-noise amplifier in 90 nm CMOS , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[4]  C. Fu,et al.  3/spl sim/11-GHz CMOS UWB LNA using dual feedback for broadband matching , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[5]  M. L. Edwards,et al.  A new criterion for linear 2-port stability using a single geometrically derived parameter , 1992 .

[6]  D. J. Cassan,et al.  A 1-V transformer-feedback low-noise amplifier for 5-GHz wireless LAN in 0.18-μm CMOS , 2003, IEEE J. Solid State Circuits.

[7]  M. Pausini Autocorrelation receivers for ultra wideband wireless communications , 2007 .

[8]  Wouter A. Serdijn,et al.  A UWB transformer-C orthonormal state space band-reject filter in 0.13 μm CMOS , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[9]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[10]  J.R. Long,et al.  A 1.2 V Reactive-Feedback 3.1–10.6 GHz Low-Noise Amplifier in 0.13 $\mu{\hbox {m}}$ CMOS , 2007, IEEE Journal of Solid-State Circuits.

[11]  W. Stutzman,et al.  A UWB antenna with a stop-band notch in the 5-GHz WLAN band , 2005, IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics, 2005..

[12]  Brian M. Sadler,et al.  On the coexistence of ultra-wideband and narrowband radio systems , 2001, 2001 MILCOM Proceedings Communications for Network-Centric Operations: Creating the Information Force (Cat. No.01CH37277).

[13]  Yuan Lu,et al.  A 1.8-3.1 dB noise figure (3-10 GHz) SiGe HBT LNA for UWB applications , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[14]  A.A. Abidi,et al.  A 3-10-GHz low-noise amplifier with wideband LC-ladder matching network , 2004, IEEE Journal of Solid-State Circuits.

[15]  Wouter A. Serdijn,et al.  On the Design of Broadband Power-to-Current Low Noise Amplifiers , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[16]  A. Bevilacqua,et al.  An ultrawideband CMOS low-noise amplifier for 3.1-10.6-GHz wireless receivers , 2004, IEEE Journal of Solid-State Circuits.

[17]  B. Nauta,et al.  Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling , 2008, IEEE Journal of Solid-State Circuits.

[18]  Jun-De Jin,et al.  A 3.1–10.6 GHz Ultra-Wideband CMOS Low Noise Amplifier With Current-Reused Technique , 2007, IEEE Microwave and Wireless Components Letters.

[19]  H. Schantz,et al.  Frequency notched UWB antennas , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.