Misfit dislocation propagation kinetics in GexSi1−x/Ge(100) heterostructures

We report measurements of misfit dislocation propagation velocities in GexSi1−x epilayers grown upon Ge(100) substrates, as opposed to the more usual Si(100) substrates. This geometry allows us to study structures with high Ge concentration (x≥0.8), and to compare with previous extensive measurements for lower Ge concentration layers (x≤0.35) grown upon Si(100). It is found that all data are well described by a misfit dislocation velocity which is linear with excess stress, and which incorporates a compositionally dependent activation energy with linear interpolation between bulk values for Si and Ge. The combined data sets from structures grown on Si(100) and Ge(100) substrates is analyzed in the framework of the diffusive double kink model for dislocation motion.

[1]  B. Weir,et al.  Misfit dislocation microstructure and kinetics for InxGa1−xAs/InP(100) and (110) interfaces under tensile and compressive stress , 1993 .

[2]  Robert Hull,et al.  New insights into the microscopic motion of dislocations in covalently bonded semiconductors by in‐situ transmission electron microscope observations of misfit dislocations in thin strained epitaxial layers , 1993 .

[3]  Y. Shiraki,et al.  Dislocation glide motion in heteroepitaxial thin films of Si1−xGex/Si(100) , 1993 .

[4]  L. Feldman,et al.  Quantitative analysis of strain relaxation in GexSi1−x/Si(110) heterostructures and an accurate determination of stacking fault energy in GexSi1−x alloys , 1992 .

[5]  D. C. Houghton,et al.  Strain relaxation kinetics in Si(1-x)Ge(x)/Si heterostructures , 1991 .

[6]  John C. Bean,et al.  Interpretation of dislocation propagation velocities in strained GexSi1−x/Si(100) heterostructures by the diffusive kink pair model , 1991 .

[7]  C. Gibbings,et al.  A quantitative analysis of strain relaxation by misfit dislocation glide in Si1−xGex/Si heterostructures , 1990 .

[8]  John C. Bean,et al.  A phenomenological description of strain relaxation in GexSi1−x/Si(100) heterostructures , 1989 .

[9]  R. Leibenguth,et al.  In situ observations of misfit dislocation propagation in GexSi1−x/Si(100) heterostructures , 1988 .

[10]  C. W. T. Bulle‐Lieuwma,et al.  Generation of misfit dislocations in semiconductors , 1987 .

[11]  Jeffrey Y. Tsao,et al.  Relaxation of strained-layer semiconductor structures via plastic flow , 1987 .

[12]  J. Rabier,et al.  Dislocations and plasticity in semiconductors. I — Dislocation structures and dynamics , 1987 .

[13]  V. Nikitenko,et al.  Experimental study of the double kink formation kinetics and kink mobility on the dislocation line in Si single crystals , 1986 .

[14]  Lawrence R. Doolittle,et al.  Algorithms for the rapid simulation of Rutherford backscattering spectra , 1985 .

[15]  John C. Bean,et al.  GexSi1−x/Si strained‐layer superlattice grown by molecular beam epitaxy , 1984 .

[16]  K. Sumino,et al.  In situ X-ray topographic study of the dislocation mobility in high-purity and impurity-doped silicon crystals , 1983 .

[17]  J. R. Patel,et al.  Charged Impurity Effects on the Deformation of Dislocation-Free Germanium , 1966 .

[18]  A. Seeger,et al.  Bildung und diffusion von Kinken als grundprozess der Versetzungsbewegung bei der messung der inneren reibung , 1962 .

[19]  D. B. Noble,et al.  Mechanisms and Kinetics of Misfit Dislocation Formation in Heteroepitaxial Thin Films , 1990 .

[20]  J. W. Matthews Defects associated with the accommodation of misfit between crystals , 1975 .

[21]  P. Haasen,et al.  Dislocations and Plastic Flow in the Diamond Structure , 1969 .

[22]  J. Hirth Theory of Dislocations , 1968 .