Median Hyperplanes in Normed Spaces - A Survey

In this survey we deal with the location of hyperplanes in n-dimensional normed spaces, i.e., we present all known results and a unifying approach to the so-called median hyperplane problem in Minkowski spaces. We describe how to find a hyperplane H minimizing the weighted sum f(H) of distances to a given, finite set of demand points. In robust statistics and operations research such an optimal hyperplane is called a median hyperplane. After summarizing the known results for the Euclidean and rectangular situation, we show that for all distance measures d derived from norms one of the hyperplanes minimizing f(H) is the affine hull of n of the demand points and, moreover, that each median hyperplane is a halving one (in a sense defined below) with respect to the given point set. Also an independence of norm result for finding optimal hyperplanes with fixed slope will be given. Furthermore, we discuss how these geometric criteria can be used for algorithmical approaches to median hyperplanes, with an extra discussion for the case of polyhedral norms. And finally a characterization of all smooth norms by a sharpened incidence criterion for median hyperplanes is mentioned.

[1]  Said Salhi,et al.  Facility Location: A Survey of Applications and Methods , 1996 .

[2]  Leonidas J. Guibas,et al.  Points and triangles in the plane and halving planes in space , 1991, Discret. Comput. Geom..

[3]  Subhash C. NarulaI,et al.  The Minimum Sum of Absolute Errors Regression: A State of the Art Survey , 1982 .

[4]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..

[5]  H. M. Wagner Linear Programming Techniques for Regression Analysis , 1959 .

[6]  G. O. Wesolowsky Location of the Median Line for Weighted Points , 1975 .

[7]  Frank Plastria,et al.  Continuous Location Problems , 1995 .

[8]  Sinisa T. Vrecica,et al.  The Colored Tverberg's Problem and Complexes of Injective Functions , 1992, J. Comb. Theory A.

[9]  G. Watson,et al.  On orthogonal linear ℓ1 approximation , 1987 .

[10]  James G. Morris,et al.  Linear facility location -- Solving extensions of the basic problem , 1983 .

[11]  Zoltán Füredi,et al.  On the number of halving planes , 1989, SCG '89.

[12]  E. Schlossmacher An Iterative Technique for Absolute Deviations Curve Fitting , 1973 .

[13]  D. T. Lee,et al.  The Power of Geometric Duality Revisited , 1985, Inf. Process. Lett..

[14]  Walter D. Fisher A Note on Curve Fitting with Minimum Deviations by Linear Programming , 1961 .

[15]  F. Y. Edgeworth XXII. On a new method of reducing observations relating to several quantities , 1888 .

[16]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[17]  Hiroshi Imai,et al.  Orthogonal Weighted Linear L1 and L∞ Approximation and Applications , 1993, Discret. Appl. Math..

[18]  Hiroshi Imai,et al.  Weighted Orthogonal Linear L∞-Approximation and Applications , 1989, WADS.

[19]  Raimund Seidel,et al.  Constructing Arrangements of Lines and Hyperplanes with Applications , 1986, SIAM J. Comput..

[20]  James G. Morris,et al.  Fitting hyperplanes by minimizing orthogonal deviations , 1980, Math. Program..

[21]  Erratum---A Note on Sharpe's Algorithm for Minimizing the Sum of Absolute Deviations in a Simple Regression Problem , 1973 .

[22]  H. Hamacher,et al.  Multicriteria planar location problems , 1996 .

[23]  Hiroshi Imai,et al.  Algorithms for vertical and orthogonal L1 linear approximation of points , 1988, SCG '88.

[24]  J. Pach,et al.  An upper bound on the number of planar k-sets , 1989, 30th Annual Symposium on Foundations of Computer Science.

[25]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[26]  E. Reingold,et al.  Combinatorial Algorithms: Theory and Practice , 1977 .

[27]  James G. Morris,et al.  A Simple Approach to Linear Facility Location , 1980 .

[28]  Nimrod Megiddo,et al.  On the complexity of locating linear facilities in the plane , 1982, Oper. Res. Lett..

[29]  Raimund Seidel,et al.  Constructing arrangements of lines and hyperplanes with applications , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[30]  Eitan Zemel,et al.  An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems , 1984, Inf. Process. Lett..

[31]  Leonidas J. Guibas,et al.  Topologically sweeping an arrangement , 1986, STOC '86.

[32]  Gottfried Martin,et al.  Gesammelte Abhandlungen Band I. , 1964 .

[33]  Anita Schöbel,et al.  Locating least-distant lines in the plane , 1998, Eur. J. Oper. Res..

[34]  Horst Martini,et al.  Approximating Finite Weighted Point Sets by Hyperplanes , 1990, SWAT.

[35]  Horst W. Hamacher Mathematische Lösungsverfahren für planare Standortprobleme , 1995 .

[36]  N. Megiddo,et al.  Finding Least-Distances Lines , 1983 .

[37]  H. Edelsbrunner,et al.  Counting triangle crossings and halving planes , 1994, Discret. Comput. Geom..

[38]  Herbert Edelsbrunner,et al.  Counting triangle crossings and halving planes , 1993, SCG '93.

[39]  H. Martini,et al.  Hyperplane Approximation and Related Topics , 1993 .

[40]  D. T. Lee,et al.  Geometric Location Problems and Their Complexity , 1986, MFCS.

[41]  P. Erdös,et al.  Dissection Graphs of Planar Point Sets , 1973 .

[42]  William H. Press,et al.  Numerical recipes , 1990 .