Investigating the thermal properties of n-hexacosane/graphene composite: A highly stable nanocomposite material for energy storage application

[1]  Qiuwan Wang,et al.  Thermal performance of modified melamine foam/graphene/paraffin wax composite phase change materials for solar-thermal energy conversion and storage , 2022, Journal of Cleaner Production.

[2]  Hussein M. Maghrabie,et al.  Battery thermal management systems: Recent progress and challenges , 2022, International Journal of Thermofluids.

[3]  I. Mukhopadhyay,et al.  Highly stable n-hexacosane loaded exfoliated graphite nanosheets for enhanced thermal energy storage application , 2022, Journal of Energy Storage.

[4]  H. Jouhara,et al.  Experimental and theoretical investigation of the influence of heat transfer rate on the thermal performance of a multi-channel flat heat pipe , 2022, Energy.

[5]  H. Jouhara,et al.  Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications , 2022, Energy.

[6]  R. Chaudhari,et al.  Fabrication of graphene/Titania nanograss composite on shape memory alloy as photoanodes for photoelectrochemical studies: Role of the graphene , 2022, International Journal of Hydrogen Energy.

[7]  I. Mukhopadhyay,et al.  In-situ preparation of titania/graphene nanocomposite via a facile sol–gel strategy: A promising anodic material for Li-ion batteries , 2021 .

[8]  Kaifeng Yang,et al.  Preparation and characterization of high efficiency microencapsulated phase change material based on paraffin wax core and SiO2 shell derived from sodium silicate precursor , 2021 .

[9]  V. Tyagi,et al.  Synthesis and characterization of conducting Polyaniline@cobalt-Paraffin wax nanocomposite as nano-phase change material: Enhanced thermophysical properties , 2021, Renewable Energy.

[10]  V. Stathopoulos,et al.  What about greener phase change materials? A review on biobased phase change materials for thermal energy storage applications , 2021 .

[11]  Jalal M. Jalil,et al.  Experimental and numerical investigation of paraffin wax as thermal insulator in a double glazed window , 2021 .

[12]  Parth Prajapati,et al.  Computational analysis of copper@paraffin composite in a cylindrical cavity for enhanced thermal energy storage system , 2021 .

[13]  I. Mukhopadhyay,et al.  Core shell paraffin/silica nanocomposite: A promising phase change material for thermal energy storage , 2020 .

[14]  Deliang Chen,et al.  Enhanced thermal conductivity of form-stable composite phase-change materials with graphite hybridizing expanded perlite/paraffin , 2020 .

[15]  X. Duan,et al.  Nanoparticle enhanced paraffin and tailing ceramic composite phase change material for thermal energy storage , 2020 .

[16]  H. Jouhara,et al.  Latent thermal energy storage technologies and applications: A review , 2020, International Journal of Thermofluids.

[17]  Dongyi Zhou,et al.  Preparation and characterization of myristic acid/expanded graphite composite phase change materials for thermal energy storage , 2020, Scientific Reports.

[18]  Xin Wang,et al.  Effects of graphite microstructure evolution on the anisotropic thermal conductivity of expanded graphite/paraffin phase change materials and their thermal energy storage performance , 2020 .

[19]  Wei Zhao,et al.  Ultra-Light Graphene Tile-Based Phase-Change Material for Efficient Thermal and Solar Energy Harvest , 2020 .

[20]  M. Joseph,et al.  Graphene enhanced paraffin nanocomposite based hybrid cooling system for thermal management of electronics , 2019 .

[21]  Fayaz,et al.  Enhancement of heat transfer in paraffin wax PCM using nano graphene composite for industrial helmets , 2019 .

[22]  H. Jouhara,et al.  An investigation into the use of the heat pipe technology in thermal energy storage heat exchangers , 2017 .

[23]  Xingxiang Zhang,et al.  Fabrication and properties of graphene oxide-grafted-poly(hexadecyl acrylate) as a solid-solid phase change material , 2017 .

[24]  Chuanchang Li,et al.  Graphene-decorated silica stabilized stearic acid as a thermal energy storage material , 2017 .

[25]  Pascal Henry Biwole,et al.  Heat transfer study of phase change materials with graphene nano particle for thermal energy storage , 2017 .

[26]  M. Fang,et al.  Preparation and properties of fatty acid eutectics/expanded perlite and expanded vermiculite shape-stabilized materials for thermal energy storage in buildings , 2017 .

[27]  Li Lu,et al.  Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors , 2017, Scientific Reports.

[28]  T. Mahlia,et al.  Thermal properties of beeswax/graphene phase change material as energy storage for building applications , 2017 .

[29]  Zhengguo Zhang,et al.  Preparation and thermal energy storage properties of d-Mannitol/expanded graphite composite phase change material , 2016 .

[30]  Tao Xu,et al.  A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage , 2016 .

[31]  Ya-Ling He,et al.  Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material , 2015 .

[32]  Bjørn Petter Jelle,et al.  Phase Change Materials and Products for Building Applications: A State-of-the-Art Review and Future Research Opportunities , 2015 .

[33]  Liwu Fan,et al.  Heat transfer during melting of graphene-based composite phase change materials heated from below , 2014 .

[34]  Yanping Yuan,et al.  Preparation and thermal characterization of capric–myristic–palmitic acid/expanded graphite composite as phase change material for energy storage , 2014 .

[35]  Ruzhu Wang,et al.  Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes , 2013 .

[36]  A. Balandin,et al.  Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries , 2013, 1305.4140.

[37]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[38]  J. Shiomi,et al.  Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusion , 2012 .

[39]  Shan Hu,et al.  The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials , 2011 .

[40]  Hui Li,et al.  Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials , 2010 .

[41]  A. Sari,et al.  Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage , 2009 .

[42]  Bei Wang,et al.  Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets , 2009 .

[43]  N. Denkov,et al.  Surfactant mixtures for control of bubble surface mobility in foam studies. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[44]  A. Sari,et al.  Thermal conductivity improvement of stearic acid using expanded graphite and carbon fiber for energy storage applications , 2007 .

[45]  K. Sharma,et al.  Experimental Investigation of Graphene-Paraffin Wax Nanocomposites for Thermal Energy Storage , 2019, Materials Today: Proceedings.

[46]  L. Cabeza,et al.  Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review , 2016 .

[47]  Yanping Yuan,et al.  Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage , 2014 .

[48]  Min Li,et al.  Preparation and thermal properties of expanded graphite/paraffin/organic montmorillonite composite phase change material , 2011, Journal of Thermal Analysis and Calorimetry.