Highly contrasted Bessel fringe minima visualization for time-averaged vibration profilometry using Hilbert transform two-frame processing.

Time-averaged fringe patterns in vibration testing of MEMS (microelectromechanical systems) are unaffected by carrier displacements. They are additive superimposition type moirés. These features and Hilbert transform vulnerability to additive trend are utilized for visualization of centers of dark Bessel fringes. Two frames with shifted carrier are subtracted for background and noise correction. Two normalized images of this pattern are calculated with slightly different bias levels and subtracted. The method does not require precise phase shifting between two frames, cosinusoidal carrier and linear recording. It enables detecting light power variations and phase shifting nonuniformities. Synthetic and experimental results corroborate the robustness of the method.

[1]  K. Patorski Moiré methods in interferometry , 1988 .

[2]  T Suzuki,et al.  Shearing interferometer using the grating as the beam splitter. , 1971, Applied optics.

[3]  M. Servin,et al.  Isotropic n-dimensional fringe pattern normalization , 2003 .

[4]  Maciej Trusiak,et al.  Space domain interpretation of incoherent moiré superimpositions using FABEMD , 2012, Other Conferences.

[5]  Krzysztof Patorski,et al.  Visualization of additive-type moiré and time-average fringe patterns using the continuous wavelet transform. , 2010, Applied optics.

[6]  Jesmin F. Khan,et al.  A novel approach of fast and adaptive bidimensional empirical mode decomposition , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Christophe Gorecki,et al.  Multifunctional interferometric platform for on-chip testing the micromechanical properties of MEMS/MOEMS , 2005 .

[8]  Alejandro Federico,et al.  Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform. , 2009, Applied optics.

[9]  M. Ragulskis,et al.  VISUALIZATION OF FRINGES IN TIME AVERAGED MOIRE PATTERNS , 2015 .

[10]  K. Larkin Natural demodulation of two-dimensional fringe patterns. II. Stationary phase analysis of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[11]  Ryszard J. Pryputniewicz Hybrid approach to deformation analysis , 1994, Other Conferences.

[12]  Hrebesh M. Subhash,et al.  Full-Field and Single-Shot Full-Field Optical Coherence Tomography: A Novel Technique for Biomedical Imaging Applications , 2012 .

[13]  Krzysztof Patorski,et al.  Interferogram intensity modulation calculations using temporal phase shifting: error analysis , 2006 .

[14]  Maciej Trusiak,et al.  Advanced processing of optical fringe patterns by automated selective reconstruction and enhanced fast empirical mode decomposition , 2014 .

[15]  Optical Differentiation of Distorted Gratings Using Talbot and Double Diffraction Interferometry: Further Considerations , 1985 .

[16]  K. Patorski,et al.  Self-imaging with nonparabolic approximation of spherical wave fronts , 1988 .

[17]  Q. Yuan,et al.  Calibration of phase-step nonuniformity in sub-nanometer-accuracy testing of high-numerical-aperture spherical surfaces , 2012 .

[18]  Sylvain Petitgrand,et al.  Application of microscopic interferometry techniques in the MEMS field , 2003, SPIE Optical Metrology.

[19]  Karl A. Stetson Chapter 7 - HOLOGRAPHIC VIBRATION ANALYSIS , 1974 .

[20]  Krzysztof Patorski,et al.  Adaptive enhancement of optical fringe patterns by selective reconstruction using FABEMD algorithm and Hilbert spiral transform. , 2012, Optics express.

[21]  G O Rosvold,et al.  Video-based vibration analysis using projected fringes. , 1994, Applied optics.

[22]  Y. Y. Hung,et al.  Moiré contour-sum contour-difference, and vibration analysis of arbitrary objects. , 1971, Applied optics.

[23]  K. A. Stetson,et al.  Measuring combination mode vibration patterns by hologram interferometry , 1969 .

[24]  K. Patorski,et al.  Evaluation of amplitude encoded fringe patterns using the bidimensional empirical mode decomposition and the 2D Hilbert transform generalizations. , 2011, Applied optics.

[25]  M. Chen,et al.  Algorithm immune to tilt phase-shifting error for phase-shifting interferometers. , 2000, Applied optics.

[26]  Liudong Xiong,et al.  Phase-error analysis and elimination for nonsinusoidal waveforms in Hilbert transform digital-fringe projection profilometry. , 2009, Optics letters.

[27]  X. Su,et al.  Improved Fourier transform profilometry for the automatic measurement of 3D object shapes , 1990 .

[28]  Byeong Ha Lee,et al.  Image restoration method based on Hilbert transform for full-field optical coherence tomography. , 2008, Applied optics.

[29]  Krzysztof Patorski,et al.  Fourier domain interpretation of real and pseudo-moiré phenomena. , 2011, Optics express.

[30]  Olof Bryngdahl,et al.  Characteristics of superposed patterns in optics , 1976 .

[31]  L. S. Ong,et al.  Analysis of the vibration modes of piezoelectric circular microdiaphragms , 2010 .

[32]  Victor Nascov,et al.  Tilt-compensating algorithm for phase-shift interferometry. , 2002, Applied optics.

[33]  M. A. Oldfield,et al.  Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[34]  Krzysztof Patorski,et al.  Active microelement testing by interferometry using time-average and quasi-stroboscopic techniques , 2003, SPIE Optical Metrology.

[35]  R. Smith,et al.  Vibration of micromachined circular piezoelectric diaphragms , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[36]  Reiner Eschbach,et al.  Generation of moiré by nonlinear transfer characteristics , 1988 .

[37]  Ryszard J. Pryputniewicz,et al.  Measurement Of Vibration Patterns Using Electro-Optic Holography , 1990, Optics & Photonics.

[38]  Roger D. Hersch,et al.  The role of Fourier theory and of modulation in the prediction of visible moiré effects , 2009 .

[39]  Adam Styk,et al.  Tilt-shift error detection in phase-shifting interferometry. , 2006, Optics express.

[40]  J. Hsu,et al.  Quantitative three-beam Ronchi test. , 1990, Applied optics.

[41]  J S Lim,et al.  Additive type moire with computer image processing. , 1989, Applied optics.

[42]  Krzysztof Patorski,et al.  Analysis of systematic errors in spatial carrier phase shifting applied to interferogram intensity modulation determination. , 2007, Applied optics.

[43]  Minvydas Ragulskis,et al.  The structure of moiré grating lines and its influence to time-averaged fringes , 2009 .

[44]  Zenonas Navickas,et al.  Interpretation of Fringes Produced by Time‐Averaged Projection Moiré , 2011 .

[45]  Minvydas Ragulskis,et al.  Contrast enhancement of time-averaged fringes based on moving average mapping functions , 2009 .

[46]  S. Ellingsrud,et al.  Analysis of a data-based TV–holography system used to measure small vibration amplitudes , 1992 .

[47]  Dongqing Wang,et al.  Two-dimensional color Schlieren system , 1990 .

[48]  Sylvain Petitgrand,et al.  Quantitative time-averaged microscopic interferometry for micromechanical device vibration mode characterization , 2001, Lasers in Metrology and Art Conservation.