A Resistive Memory in Semiconducting BiFeO3 Thin‐Film Capacitors

A ferroelectric-resistive random access memory consisting of a conductive BiFeO3 epitaxial thin film with a unipolar diode current modulated by electric polarization orientation is reported. This device has a memory that lasts for months, a sufficiently high on current and on/ off ratio to permit ordinary sense amplifiers to measure "1" or " 0", and is fully compatible with complementary metal- oxide semiconductor processing.

[1]  L. Pintilie,et al.  Ferroelectric Schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure , 2010 .

[2]  Sergei V. Kalinin,et al.  Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. , 2009, Nature materials.

[3]  T. Zhao,et al.  Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature , 2006, Nature materials.

[4]  Chang-Beom Eom,et al.  Size effects in ultrathin epitaxial ferroelectric heterostructures , 2004 .

[5]  S. Fusil,et al.  Room-temperature coexistence of large electric polarization and magnetic order in Bi Fe O 3 single crystals , 2007, 0706.0404.

[6]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[7]  Ho Won Jang,et al.  Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale. , 2009, Nano letters.

[8]  Lucian Pintilie,et al.  Ferroelectric polarization-leakage current relation in high quality epitaxial Pb ( Zr , Ti ) O 3 films , 2007 .

[9]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[10]  Wolf,et al.  Ferroelectric Schottky diode. , 1994, Physical review letters.

[11]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[12]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[13]  James F. Scott,et al.  Switching kinetics of lead zirconate titanate submicron thin‐film memories , 1988 .

[14]  Coexisting depinning effect of domain walls during the fatigue in ferroelectric thin films , 2006 .

[15]  E. Tsymbal,et al.  Giant Electroresistance in Ferroelectric Tunnel Junctions , 2005, cond-mat/0502109.

[16]  Sergei V. Kalinin,et al.  Polarization Control of Electron Tunneling into Ferroelectric Surfaces , 2009, Science.

[17]  Chang-Beom Eom,et al.  Domain Engineering for Enhanced Ferroelectric Properties of Epitaxial (001) BiFeO Thin Films , 2009 .

[18]  Ute Drechsler,et al.  Transition-metal-oxide-based resistance-change memories , 2008, IBM J. Res. Dev..

[19]  Junling Wang,et al.  Evidences for the depletion region induced by the polarization of ferroelectric semiconductors , 2009 .

[20]  N. Setter,et al.  Direct observation of inversely polarized frozen nanodomains in fatigued ferroelectric memory capacitors , 2003 .

[21]  David Vanderbilt,et al.  Enhancement of ferroelectricity at metal-oxide interfaces. , 2008, Nature materials.

[22]  V. Garcia,et al.  Giant tunnel electroresistance for non-destructive readout of ferroelectric states , 2009, Nature.

[23]  Hironaru Murakami,et al.  Understanding the Nature of Ultrafast Polarization Dynamics of Ferroelectric Memory in the Multiferroic BiFeO3 , 2009 .

[24]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[25]  Sergei V. Kalinin,et al.  Conduction at domain walls in oxide multiferroics. , 2009, Nature materials.

[26]  E. Williams,et al.  Polarization relaxation kinetics and 180° domain wall dynamics in ferroelectric thin films , 2001 .

[27]  A. Sawa Resistive switching in transition metal oxides , 2008 .

[28]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .