A bundle-filter method for nonsmooth convex constrained optimization

For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression and aggregation techniques of proximal bundle methods. On the other hand, the filter criterion for accepting a candidate point as the new iterate is sometimes easier to satisfy than the usual descent condition in bundle methods. Some encouraging preliminary computational results are also reported.

[1]  Ladislav Luksan,et al.  Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation , 1984, Kybernetika.

[2]  Jan Vlcek,et al.  Algorithm 811: NDA: algorithms for nondifferentiable optimization , 2001, TOMS.

[3]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[4]  Yurii Nesterov,et al.  New variants of bundle methods , 1995, Math. Program..

[5]  Antonio Frangioni,et al.  Generalized Bundle Methods , 2002, SIAM J. Optim..

[6]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[7]  R. Mifflin A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization , 1982 .

[8]  K. Kiwiel An Exact Penalty Function Algorithm for Non-smooth Convex Constrained Minimization Problems , 1985 .

[9]  Robert Mifflin,et al.  An Algorithm for Constrained Optimization with Semismooth Functions , 1977, Math. Oper. Res..

[10]  Pablo A. Rey,et al.  DYNAMICAL ADJUSTMENT OF THE PROX-PARAMETER IN BUNDLE METHODS , 2002 .

[11]  J. Frédéric Bonnans,et al.  Numerical Optimization: Theoretical and Practical Aspects (Universitext) , 2006 .

[12]  K. Kiwiel Methods of Descent for Nondifferentiable Optimization , 1985 .

[13]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[14]  Sven Leyffer,et al.  On the Global Convergence of a Filter--SQP Algorithm , 2002, SIAM J. Optim..

[15]  Sven Leyffer,et al.  A bundle filter method for nonsmooth nonlinear optimization , 1999 .

[16]  K. Kiwiel A constraint linearization method for nondifferentiable convex minimization , 1987 .

[17]  Clóvis C. Gonzaga,et al.  A Globally Convergent Filter Method for Nonlinear Programming , 2003, SIAM J. Optim..

[18]  A. Auslender Numerical methods for nondifferentiable convex optimization , 1987 .

[19]  Krzysztof C. Kiwiel,et al.  Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization , 1991, Math. Program..

[20]  Alfred Auslender,et al.  How to deal with the unbounded in optimization: Theory and algorithms , 1997, Math. Program..

[21]  K. Kiwiel A Method for Solving Certain Quadratic Programming Problems Arising in Nonsmooth Optimization , 1986 .

[22]  Jan Vlcek,et al.  A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..

[23]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[24]  L. Luksan,et al.  Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained Minimization1 , 1999 .

[25]  Antonio Frangioni,et al.  Solving semidefinite quadratic problems within nonsmooth optimization algorithms , 1996, Comput. Oper. Res..

[26]  Sven Leyffer,et al.  Nonlinear programming without a penalty function , 2002, Math. Program..

[27]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[28]  Jean Charles Gilbert,et al.  Numerical Optimization: Theoretical and Practical Aspects , 2003 .

[29]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[30]  Claudia A. Sagastizábal,et al.  An Infeasible Bundle Method for Nonsmooth Convex Constrained Optimization without a Penalty Function or a Filter , 2005, SIAM J. Optim..

[31]  Nicholas I. M. Gould,et al.  Global Convergence of a Trust-Region SQP-Filter Algorithm for General Nonlinear Programming , 2002, SIAM J. Optim..

[32]  M. Powell On the quadratic programming algorithm of Goldfarb and Idnani , 1985 .

[33]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .