A chemical potential equalization method for molecular simulations

A formulation of the chemical potential (electronegativity) equalization principle is presented from the perspective of density‐functional theory. The resulting equations provide a linear‐response framework for describing the redistribution of electrons upon perturbation by an applied field. The method has two main advantages over existing electronegativity equalization and charge equilibration methods that allow extension to accurate molecular dynamics simulations. Firstly, the expansion of the energy is taken about the molecular ground state instead of the neutral atom ground states; hence, in the absence of an external field, the molecular charge distribution can be represented by static point charges and dipoles obtained from fitting to high‐level ab initio calculations without modification. Secondly, in the presence of applied fields or interactions with other molecules, the density response can be modeled accurately using basis functions. Inclusion of basis functions with dipolar or higher order mul...

[1]  J. Gasteiger,et al.  ITERATIVE PARTIAL EQUALIZATION OF ORBITAL ELECTRONEGATIVITY – A RAPID ACCESS TO ATOMIC CHARGES , 1980 .

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[4]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[5]  H. H. Jaffé,et al.  Electronegativity. I. Orbital Electronegativity of Neutral Atoms , 1962 .

[6]  R. Nalewajski A study of electronegativity equalization , 1985 .

[7]  M. E. Casida,et al.  Comparison of local‐density and Hartree–Fock calculations of molecular polarizabilities and hyperpolarizabilities , 1993 .

[8]  Michiel Sprik,et al.  A polarizable model for water using distributed charge sites , 1988 .

[9]  Ralph G. Pearson,et al.  Absolute Electronegativity and Hardness: Application to Inorganic Chemistry , 1988 .

[10]  H. Weinstein,et al.  Some relations between electronic distribution and electronegativity , 1979 .

[11]  A. J. Perkins The Refractive Index of Anhydrous Hydrogen Fluoride1a , 1964 .

[12]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[13]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[14]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[15]  Johann Gasteiger,et al.  Electronegativity equalization: application and parametrization , 1985 .

[16]  Brian J. Smith,et al.  Characterization of the bifurcated structure of the water dimer , 1991 .

[17]  Gerald D. Mahan,et al.  Local density theory of polarizability , 1990 .

[18]  R. Parr,et al.  Toward a semiempirical density functional theory of chemical binding , 1987 .

[19]  J. Mccammon,et al.  Dynamics of Proteins and Nucleic Acids , 2018 .

[20]  R. T. Sanderson Chemical Bonds and Bond Energy , 1976 .

[21]  K. Leuven,et al.  Electronegativity equalization and its applications , 1987 .

[22]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[23]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[24]  M. Spackman Accurate prediction of static dipole polarizabilities with moderately sized basis sets , 1989 .

[25]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[26]  L. Szentpály Studies on electronegativity equalization , 1991 .

[27]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[28]  J. Cioslowski,et al.  Spin–resolved analysis of electronegativity equalization and electron flow in molecules , 1995 .

[29]  Weitao Yang A local projection method for the linear combination of atomic orbital implementation of density‐functional theory , 1991 .

[30]  B. Montgomery Pettitt,et al.  MODELING SOLVENT IN BIOMOLECULAR SYSTEMS , 1994 .

[31]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[32]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[33]  W. Mortier,et al.  Comparing homogeneous and heterogeneous acid catalysts by a density-functional based sensitivity analysis of their interaction with carbenium ions , 1993 .

[34]  R. Dreizler,et al.  Density Functional Methods In Physics , 1985 .

[35]  D. York,et al.  A new definition of atomic charges based on a variational principle for the electrostatic potential energy , 1995 .

[36]  Harold A. Scheraga,et al.  Determination of net atomic charges using a modified partial equalization of orbital electronegativity method. III. Application to halogenated and aromatic molecules , 1993, J. Comput. Chem..

[37]  Zhong Yang,et al.  A scheme for calculating atomic charge distribution in large molecules based on density functional theory and electronegativity equalization , 1994 .

[38]  Elliott H. Lieb,et al.  Density Functionals for Coulomb Systems , 1983 .

[39]  D. Chong Theoretical Calculations of Dipole Moments, Polarizabilities, and Hyperpolarizabilities of HF, OCS, O3, CH3F, and CH3Cl by Local Density Approximation , 1992 .

[40]  Robert G. Parr,et al.  Density functional approach to the frontier-electron theory of chemical reactivity , 1984 .

[41]  R. T. Sanderson,et al.  An Interpretation of Bond Lengths and a Classification of Bonds. , 1951, Science.

[42]  R. Parr,et al.  Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Hoffmann An Extended Hückel Theory. I. Hydrocarbons , 1963 .

[44]  Steven J. Stuart,et al.  Dynamical fluctuating charge force fields: Application to liquid water , 1994 .

[45]  G. G. Hall,et al.  Electrostatic water models , 1992 .

[46]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .