Botulinum neurotoxins: genetic, structural and mechanistic insights

[1]  M. Dorner,et al.  Molecular basis for disruption of E-cadherin adhesion by botulinum neurotoxin A complex , 2014, Science.

[2]  Eric A. Johnson,et al.  Persistence of Botulinum Neurotoxin A Subtypes 1-5 in Primary Rat Spinal Cord Cells , 2014, PloS one.

[3]  Gary Xie,et al.  Molecular characterization of a novel botulinum neurotoxin type H gene. , 2014, The Journal of infectious diseases.

[4]  T. Ceska,et al.  Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A , 2013, Nature.

[5]  C. Montecucco,et al.  Membrane translocation of tetanus and botulinum neurotoxins , 2013 .

[6]  Suzanne R. Kalb,et al.  Comparison of the catalytic properties of the botulinum neurotoxin subtypes A1 and A5. , 2013, Biochimica et biophysica acta.

[7]  M. Popoff,et al.  Genetic characteristics of toxigenic Clostridia and toxin gene evolution. , 2013, Toxicon : official journal of the International Society on Toxinology.

[8]  C. Montecucco,et al.  Neutralisation of specific surface carboxylates speeds up translocation of botulinum neurotoxin type B enzymatic domain , 2013, FEBS letters.

[9]  Yanxiang Zhao,et al.  Engineering Clostridia Neurotoxins with elevated catalytic activity. , 2013, Toxicon : official journal of the International Society on Toxinology.

[10]  C. Lillig,et al.  Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. , 2013, Antioxidants & redox signaling.

[11]  Lei Jin,et al.  Structure of a Bimodular Botulinum Neurotoxin Complex Provides Insights into Its Oral Toxicity , 2013, PLoS pathogens.

[12]  R. Berntsson,et al.  Crystal structures of botulinum neurotoxin DC in complex with its protein receptors synaptotagmin I and II. , 2013, Structure.

[13]  Eric A. Johnson,et al.  Characterization of Botulinum Neurotoxin A Subtypes 1 Through 5 by Investigation of Activities in Mice, in Neuronal Cell Cultures, and In Vitro , 2013, Infection and Immunity.

[14]  J. Jung,et al.  Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking , 2013, PloS one.

[15]  S. Pantano,et al.  Evidence for a radial SNARE super-complex mediating neurotransmitter release at the Drosophila neuromuscular junction , 2013, Journal of Cell Science.

[16]  Structural insights into the functional role of the Hcn sub-domain of the receptor-binding domain of the botulinum neurotoxin mosaic serotype C/D. , 2013, Biochimie.

[17]  J. Marks,et al.  Identification of the SV2 protein receptor-binding site of botulinum neurotoxin type E. , 2013, The Biochemical journal.

[18]  R. Berntsson,et al.  Structure of dual receptor binding to botulinum neurotoxin B , 2013, Nature Communications.

[19]  L. Simpson The life history of a botulinum toxin molecule. , 2013, Toxicon : official journal of the International Society on Toxinology.

[20]  S. Pantano,et al.  The blockade of the neurotransmitter release apparatus by botulinum neurotoxins , 2013, Cellular and Molecular Life Sciences.

[21]  M. Hallett,et al.  Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. , 2013, Toxicon : official journal of the International Society on Toxinology.

[22]  A. T. Carter,et al.  The Type F6 Neurotoxin Gene Cluster Locus of Group II Clostridium botulinum Has Evolved by Successive Disruption of Two Different Ancestral Precursors , 2013, Genome biology and evolution.

[23]  R. Stevens,et al.  Identification of Fibroblast Growth Factor Receptor 3 (FGFR3) as a Protein Receptor for Botulinum Neurotoxin Serotype A (BoNT/A) , 2013, PLoS pathogens.

[24]  N. Dover,et al.  Clostridium botulinum Strain Af84 Contains Three Neurotoxin Gene Clusters: Bont/A2, bont/F4 and bont/F5 , 2013, PloS one.

[25]  D. Lacy,et al.  Molecular assembly of botulinum neurotoxin progenitor complexes , 2013, Proceedings of the National Academy of Sciences.

[26]  Marco Pirazzini,et al.  Botulinum Neurotoxin Type A is Internalized and Translocated from Small Synaptic Vesicles at the Neuromuscular Junction , 2013, Molecular Neurobiology.

[27]  C. Montecucco,et al.  The thioredoxin reductase‐thioredoxin system is involved in the entry of tetanus and botulinum neurotoxins in the cytosol of nerve terminals , 2013, FEBS letters.

[28]  C. Montecucco,et al.  Time course and temperature dependence of the membrane translocation of tetanus and botulinum neurotoxins C and D in neurons. , 2013, Biochemical and biophysical research communications.

[29]  G. Oyler,et al.  Persistence of Botulinum neurotoxin inactivation of nerve function. , 2013, Current topics in microbiology and immunology.

[30]  A. Rummel Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. , 2013, Current topics in microbiology and immunology.

[31]  Audrey Fischer Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. , 2013, Current topics in microbiology and immunology.

[32]  Y. Fujinaga,et al.  Uptake of botulinum neurotoxin in the intestine. , 2013, Current topics in microbiology and immunology.

[33]  T. Binz Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. , 2013, Current topics in microbiology and immunology.

[34]  K. Hill,et al.  Genetic diversity within Clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. , 2013, Current topics in microbiology and immunology.

[35]  M. Hallett,et al.  Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. , 2013, Toxicon : official journal of the International Society on Toxinology.

[36]  M. Caleo,et al.  Botulinum Neurotoxins A and E Undergo Retrograde Axonal Transport in Primary Motor Neurons , 2012, PLoS pathogens.

[37]  R. Jahn,et al.  Molecular machines governing exocytosis of synaptic vesicles , 2012, Nature.

[38]  J. Barbieri,et al.  Botulinum Neurotoxin Serotype C Associates with Dual Ganglioside Receptors to Facilitate Cell Entry* , 2012, The Journal of Biological Chemistry.

[39]  H. Kasai,et al.  Distinct initial SNARE configurations underlying the diversity of exocytosis. , 2012, Physiological reviews.

[40]  Pietro De Camilli,et al.  Synaptic vesicle endocytosis. , 2012, Cold Spring Harbor perspectives in biology.

[41]  Eric A. Johnson,et al.  Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins , 2012, Journal of Cell Science.

[42]  Eric A. Johnson,et al.  Botulinum Neurotoxins B and E Translocate at Different Rates and Exhibit Divergent Responses to GT1b and Low pH , 2012, Biochemistry.

[43]  J. Barbieri,et al.  Vaccines against botulism. , 2012, Current opinion in microbiology.

[44]  J. Molgó,et al.  Preferential Entry of Botulinum Neurotoxin A Hc Domain through Intestinal Crypt Cells and Targeting to Cholinergic Neurons of the Mouse Intestine , 2012, PLoS pathogens.

[45]  C. Shoemaker,et al.  Botulinum Neurotoxin Is Shielded by NTNHA in an Interlocked Complex , 2012, Science.

[46]  Brian H. Raphael,et al.  Discovery of a novel enzymatic cleavage site for botulinum neurotoxin F5 , 2012, FEBS letters.

[47]  Possession, use, and transfer of select agents and toxins; biennial review. Final rule. , 2012, Federal register.

[48]  Lin Ma,et al.  Single application of A2 NTX, a botulinum toxin A2 subunit, prevents chronic pain over long periods in both diabetic and spinal cord injury-induced neuropathic pain models. , 2012, Journal of pharmacological sciences.

[49]  P. Bolognese,et al.  Double anchorage to the membrane and intact inter‐chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons , 2011, Cellular microbiology.

[50]  Eric A. Johnson,et al.  Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. , 2011, Cell host & microbe.

[51]  Sally Martin,et al.  Dynamin Inhibition Blocks Botulinum Neurotoxin Type A Endocytosis in Neurons and Delays Botulism* , 2011, The Journal of Biological Chemistry.

[52]  A. Pich,et al.  The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites , 2011, Molecular microbiology.

[53]  P. Rigsby,et al.  Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. , 2011, Toxicon : official journal of the International Society on Toxinology.

[54]  W. Chaicumpa,et al.  Botulinum Neurotoxins and Botulism: A Novel Therapeutic Approach , 2011, Toxins.

[55]  M. Jackson,et al.  Syntaxin requirement for Ca2+-triggered exocytosis in neurons and endocrine cells demonstrated with an engineered neurotoxin. , 2011, Biochemistry.

[56]  W. Taylor,et al.  On the evolutionary origin of the chaperonins , 2011, Proteins.

[57]  D. Moir,et al.  Small Molecule Inhibitors as Countermeasures for Botulinum Neurotoxin Intoxication , 2010, Molecules.

[58]  D. Finn,et al.  A Dileucine in the Protease of Botulinum Toxin A Underlies Its Long-lived Neuroparalysis , 2010, The Journal of Biological Chemistry.

[59]  R. C. Seet,et al.  Use of botulinum toxin in the neurology clinic , 2010, Nature Reviews Neurology.

[60]  A. Pich,et al.  Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. , 2010, The Biochemical journal.

[61]  Mauricio Montal,et al.  Botulinum neurotoxin: a marvel of protein design. , 2010, Annual review of biochemistry.

[62]  M. Takeichi,et al.  Botulinum hemagglutinin disrupts the intercellular epithelial barrier by directly binding E-cadherin , 2010, The Journal of cell biology.

[63]  J. Marks,et al.  Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. , 2010, Protein engineering, design & selection : PEDS.

[64]  J. A. Garza,et al.  Llama Single Domain Antibodies Specific for the 7 Botulinum Neurotoxin Serotypes as Heptaplex Immunoreagents , 2010, PloS one.

[65]  J. Reichheld,et al.  Thioredoxins and glutaredoxins: unifying elements in redox biology. , 2009, Annual review of genetics.

[66]  Leonard A. Smith Botulism and vaccines for its prevention. , 2009, Vaccine.

[67]  Brian H. Raphael,et al.  Neurotoxin Gene Clusters in Clostridium botulinum Type Ab Strains , 2009, Applied and Environmental Microbiology.

[68]  J. Marks,et al.  Antibody Protection against Botulinum Neurotoxin Intoxication in Mice , 2009, Infection and Immunity.

[69]  Silvio C. E. Tosatto,et al.  Electric dipole reorientation in the interaction of botulinum neurotoxins with neuronal membranes , 2009, FEBS letters.

[70]  J. Barbieri,et al.  Engineering botulinum neurotoxin to extend therapeutic intervention , 2009, Proceedings of the National Academy of Sciences.

[71]  R. Fagan,et al.  Persistence of botulinum toxin in patients' serum: Alaska, 1959-2007. , 2009, The Journal of infectious diseases.

[72]  Silvio C. E. Tosatto,et al.  The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. , 2009, Biochemical and biophysical research communications.

[73]  K. Janda,et al.  Bimodal modulation of the botulinum neurotoxin protein-conducting channel , 2009, Proceedings of the National Academy of Sciences.

[74]  J. Navaza,et al.  Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. , 2008, Journal of molecular biology.

[75]  N. Loberto,et al.  Glycosphingolipid behaviour in complex membranes. , 2009, Biochimica et biophysica acta.

[76]  Edwin R Chapman,et al.  Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. , 2008, Molecular biology of the cell.

[77]  C. Drenzek,et al.  International outbreak of severe botulism with prolonged toxemia caused by commercial carrot juice. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[78]  A. Chenal,et al.  Membrane Interaction of Botulinum Neurotoxin A Translocation (T) Domain , 2008, Journal of Biological Chemistry.

[79]  M. Kozlov,et al.  Mechanics of membrane fusion , 2008, Nature Structural &Molecular Biology.

[80]  J. Sobel,et al.  Global Occurrence of Infant Botulism, 1976–2006 , 2008, Pediatrics.

[81]  A. Holmgren,et al.  Thioredoxins and glutaredoxins as facilitators of protein folding. , 2008, Biochimica et biophysica acta.

[82]  J. Marks,et al.  Molecular Architecture of Botulinum Neurotoxin E Revealed by Single Particle Electron Microscopy* , 2008, Journal of Biological Chemistry.

[83]  T. Wenham Botulism: a rare complication of injecting drug use , 2007, Emergency Medicine Journal.

[84]  M. Montal,et al.  Crucial Role of the Disulfide Bridge between Botulinum Neurotoxin Light and Heavy Chains in Protease Translocation across Membranes* , 2007, Journal of Biological Chemistry.

[85]  M. Montal,et al.  Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes , 2007, Proceedings of the National Academy of Sciences.

[86]  T. Weil,et al.  Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept , 2007, Proceedings of the National Academy of Sciences.

[87]  R. Stevens,et al.  Molecular evolution of antibody cross-reactivity for two subtypes of type A botulinum neurotoxin , 2007, Nature Biotechnology.

[88]  R. Stevens,et al.  Structural basis of cell surface receptor recognition by botulinum neurotoxin B , 2006, Nature.

[89]  G. Schiavo Structural biology: Dangerous liaisons on neurons , 2006, Nature.

[90]  Axel T. Brunger,et al.  Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity , 2006, Nature.

[91]  Daniel S. Chertow,et al.  Botulism in 4 adults following cosmetic injections with an unlicensed, highly concentrated botulinum preparation. , 2006, JAMA.

[92]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[93]  Eric A. Johnson,et al.  SV2 Is the Protein Receptor for Botulinum Neurotoxin A , 2006, Science.

[94]  B. Davletov,et al.  The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves , 2006, FEBS Letters.

[95]  N. Jewell,et al.  Human botulism immune globulin for the treatment of infant botulism. , 2006, The New England journal of medicine.

[96]  Roshan Kukreja,et al.  Biologically Active Novel Conformational State of Botulinum, the Most Poisonous Poison* , 2005, Journal of Biological Chemistry.

[97]  G. Ahnert-Hilger,et al.  Botulinum neurotoxin type D enables cytosolic delivery of enzymatically active cargo proteins to neurones via unfolded translocation intermediates , 2004, Journal of neurochemistry.

[98]  G. Schiavo,et al.  Presynaptic receptor arrays for clostridial neurotoxins. , 2004, Trends in microbiology.

[99]  H. Bellen,et al.  The architecture of the active zone in the presynaptic nerve terminal. , 2004, Physiology.

[100]  C. Montecucco,et al.  Comparison of the pH-induced conformational change of different clostridial neurotoxins. , 2004, Biochemical and biophysical research communications.

[101]  S. Swaminathan,et al.  Role of metals in the biological activity of Clostridium botulinum neurotoxins. , 2004, Biochemistry.

[102]  R. Ledeen,et al.  Ganglioside composition of subcellular fractions, including pre- and postsynaptic membranes, fromTorpedo electric organ , 1993, Neurochemical Research.

[103]  Eric A. Johnson,et al.  Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells , 2003, The Journal of cell biology.

[104]  M. Höltje,et al.  Regulation of vesicular neurotreansmitter transporters , 2003 .

[105]  M. Denke A Novel Therapeutic Approach , 2003, Journal of managed care pharmacy : JMCP.

[106]  M. Höltje,et al.  Regulation of vesicular neurotransmitter transporters. , 2003, Reviews of physiology, biochemistry and pharmacology.

[107]  M. Montal,et al.  Translocation of botulinum neurotoxin light chain protease through the heavy chain channel , 2003, Nature Structural Biology.

[108]  C. Schengrund,et al.  Botulinum Neurotoxin A Activity Is Dependent upon the Presence of Specific Gangliosides in Neuroblastoma Cells Expressing Synaptotagmin I* , 2002, The Journal of Biological Chemistry.

[109]  B. Singh,et al.  Spectroscopic analysis of low pH and lipid-induced structural changes in type A botulinum neurotoxin relevant to membrane channel formation and translocation. , 2002, Biophysical chemistry.

[110]  Kazuro Furukawa,et al.  Complex Gangliosides at the Neuromuscular Junction Are Membrane Receptors for Autoantibodies and Botulinum Neurotoxin But Redundant for Normal Synaptic Function , 2002, The Journal of Neuroscience.

[111]  Philip K. Russell,et al.  Botulinum toxin as a biological weapon: medical and public health management. , 2001, JAMA.

[112]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[113]  L. Smith,et al.  Development of vaccines for prevention of botulism. , 2000, Biochimie.

[114]  S. Swaminathan,et al.  Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B , 2000, Nature Structural Biology.

[115]  T. A. Ryan,et al.  Real-time measurements of vesicle-SNARE recycling in synapses of the central nervous system , 2000, Nature Cell Biology.

[116]  G. Schiavo,et al.  Neurotoxins affecting neuroexocytosis. , 2000, Physiological reviews.

[117]  K. Takamiya,et al.  Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. , 1999, Biochimica et biophysica acta.

[118]  M. D. Samuel,et al.  Water and sediment characteristics associated with avian botulism outbreaks in wetlands , 1999 .

[119]  A. B. Maksymowych,et al.  Pure Botulinum Neurotoxin Is Absorbed from the Stomach and Small Intestine and Produces Peripheral Neuromuscular Blockade , 1999, Infection and Immunity.

[120]  A. Ballio,et al.  Conductive properties and gating of channels formed by syringopeptin 25A, a bioactive lipodepsipeptide from Pseudomonas syringae pv. syringae, in planar lipid membranes. , 1999, Molecular plant-microbe interactions : MPMI.

[121]  R. Stevens,et al.  Crystal structure of botulinum neurotoxin type A and implications for toxicity , 1998, Nature Structural Biology.

[122]  Reinhard Jahn,et al.  Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution , 1998, Nature.

[123]  Gero Miesenböck,et al.  Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins , 1998, Nature.

[124]  M. Cherington Clinical spectrum of botulism , 1998, Muscle & nerve.

[125]  R. Sheridan Gating and permeability of ion channels produced by botulinum toxin types A and E in PC12 cell membranes. , 1998, Toxicon : official journal of the International Society on Toxinology.

[126]  M. Serra,et al.  The adsorption of Pseudomonas aeruginosa exotoxin A to phospholipid monolayers is controlled by pH and surface potential. , 1997, Biophysical journal.

[127]  K. Wohlfarth,et al.  Botulinum A toxins: units versus units , 1997, Naunyn-Schmiedeberg's Archives of Pharmacology.

[128]  J. Brown,et al.  Immunodiagnosis and immunotherapy of tetanus and botulinum neurotoxins. , 1995, Current topics in microbiology and immunology.

[129]  L. Williamson,et al.  Bafilomycin A1 Inhibits the Action of Tetanus Toxin in Spinal Cord Neurons in Cell Culture , 1994, Journal of neurochemistry.

[130]  T. Südhof,et al.  Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. , 1994, The EMBO journal.

[131]  C. Hatheway,et al.  Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms , 1994, Journal of clinical microbiology.

[132]  A. Omori,et al.  Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. , 1994, The Journal of biological chemistry.

[133]  L. Simpson,et al.  Inhibition of vacuolar adenosine triphosphatase antagonizes the effects of clostridial neurotoxins but not phospholipase A2 neurotoxins. , 1994, The Journal of pharmacology and experimental therapeutics.

[134]  L. Tauc,et al.  A role for the interchain disulfide or its participating thiols in the internalization of botulinum neurotoxin A revealed by a toxin derivative that binds to ecto-acceptors and inhibits transmitter release intracellularly. , 1993, The Journal of biological chemistry.

[135]  G. Schiavo,et al.  Botulinum neurotoxin serotype F is a zinc endopeptidase specific for VAMP/synaptobrevin. , 1993, The Journal of biological chemistry.

[136]  F. Benfenati,et al.  Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin , 1992, Nature.

[137]  S. Kusunoki,et al.  Serum IgG antibody to ganglioside GQ1b is a possible marker of Miller Fisher syndrome , 1992, Annals of neurology.

[138]  J. Lakey,et al.  A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A , 1991, Nature.

[139]  G. Schiavo,et al.  An intact interchain disulfide bond is required for the neurotoxicity of tetanus toxin , 1990, Infection and immunity.

[140]  O. Ptitsyn,et al.  Evidence for a molten globule state as a general intermediate in protein folding , 1990, FEBS letters.

[141]  G. R. Smith Botulism. The organism, its toxins, the disease: By L. DS. SMITH and H. SUGIYAMA. 1988, 2nd edn. American Lecture Series in Clinical Microbiology (ed. by A. Balows), Pubn No. 1078. Charles C. Thomas, Springfield, Illinois. Pp. xi and 171. , 1989 .

[142]  O. Ptitsyn,et al.  The ‘molten globule’ state is involved in the translocation of proteins across membranes? , 1988, FEBS letters.

[143]  A. Finkelstein,et al.  The N‐terminal half of the heavy chain of botulinum type A neurotoxin forms channels in planar phospholipid bilayers , 1987, FEBS letters.

[144]  N. Fairweather,et al.  Immunization of mice against tetanus with fragments of tetanus toxin synthesized in Escherichia coli , 1987, Infection and immunity.

[145]  C. Montecucco How do tetanus and botulinum toxins bind to neuronal membranes , 1986 .

[146]  L. Fenicia,et al.  Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. , 1986, The Journal of infectious diseases.

[147]  J. Black,et al.  Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis , 1986, The Journal of cell biology.

[148]  J. J. Donovan,et al.  Ion-conducting channels produced by botulinum toxin in planar lipid membranes. , 1986, Biochemistry.

[149]  B. Ehrlich,et al.  Channels formed by botulinum, tetanus, and diphtheria toxins in planar lipid bilayers: relevance to translocation of proteins across membranes. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[150]  J. Black,et al.  Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization , 1984, Nature.

[151]  T. Reese Synaptic vesicle exocytosis. , 1981, JAMA.

[152]  R. Kelly,et al.  Lipids of synaptic vesicles: relevance to the mechanism of membrane fusion. , 1981, Biochemistry.

[153]  G. Sakaguchi,et al.  Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes , 1980, Infection and immunity.

[154]  S. McLaughlin,et al.  Adsorption of monovalent cations to bilayer membranes containing negative phospholipids. , 1979, Biochemistry.

[155]  P. Bonventre Absorption of botulinal toxin from the gastrointestinal tract. , 1979, Reviews of infectious diseases.

[156]  M. M. Garcia Botulism: the Organism, its Toxins, the Disease , 1978 .

[157]  M. Rapport,et al.  THE BINDING OF BOTULINUM TOXIN TO MEMBRANE LIPIDS: SPHINGOLIPIDS, STEROIDS AND FATTY ACIDS , 1971, Journal of neurochemistry.

[158]  W. E. Heyningen Tentative Identification of the Tetanus Toxin Receptor in Nervous Tissue , 1959 .