ARL-unbiased control charts with alarm and warning lines for monitoring Weibull percentiles using the first-order statistic

This article discusses methodology for constructing control charts to monitor the percentiles of a Weibull process with known shape parameter. Periodic samples are censored at the smallest observed value. Charts with alarm and warning limits are studied, and these limits are derived using theoretical results based on the first-order statistic. The performance of the proposed charts is evaluated and compared using average run lengths. A numerical application concerning life tests of an electronic product is presented to illustrate the methods.

[1]  A. R. Crathorne,et al.  Economic Control of Quality of Manufactured Product. , 1933 .

[2]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[3]  S. B. Littauer,et al.  STATISTICAL CONTROL OF SAMPLE EXTREMES. , 1967 .

[4]  Tuncel M. Yegulalp,et al.  Control charts for exponentially distributed product life , 1975 .

[5]  Peter R. Nelson,et al.  The Effect of Non-Normality on the Control Limits of X-Bar Charts , 1976 .

[6]  Wayne Nelson,et al.  Applied life data analysis , 1983 .

[7]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[8]  Frontiers in statistical quality control 2 , 1985 .

[9]  W. J. Padgett,et al.  Shewhart-type charts for percentiles of strength distributions , 1990 .

[10]  W. Meeker Accelerated Testing: Statistical Models, Test Plans, and Data Analyses , 1991 .

[11]  D. Coleman Statistical Process Control—Theory and Practice , 1993 .

[12]  Charles P. Quesenberry,et al.  The Effect of Sample Size on Estimated Limits for and X Control Charts , 1993 .

[13]  Charles W. Champ,et al.  The Performance of Control Charts for Monitoring Process Variation , 1995 .

[14]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[15]  Patrick D. Spagon Statistical quality assurance methods for engineers , 1998 .

[16]  Gemai Chen,et al.  The run length distributions of the R, s and s2 control charts when is estimated , 1998 .

[17]  M. F. Ramalhoto,et al.  Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals , 1999 .

[18]  J. Bert Keats,et al.  Statistical Methods for Reliability Data , 1999 .

[19]  Stefan H. Steiner,et al.  Monitoring Processes with Highly Censored Data , 2000 .

[20]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[21]  N JoséVargas,et al.  Carta de control CEV para distribuciones Weibull con datos censurados , 2005 .

[22]  Wayne B. Nelson,et al.  Applied Life Data Analysis: Nelson/Applied Life Data Analysis , 2005 .

[23]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[24]  W. J. Padgett,et al.  A Bootstrap Control Chart for Weibull Percentiles , 2006, Qual. Reliab. Eng. Int..

[25]  Fred Spiring,et al.  Introduction to Statistical Quality Control , 2007, Technometrics.

[26]  Sung H. Park,et al.  An Example of Data Technology Product: A Control Chart for Weibull Processes , 2008 .

[27]  Robert Piessens,et al.  Quadpack: A Subroutine Package for Automatic Integration , 2011 .

[28]  Francis Pascual,et al.  Monitoring the Weibull shape parameter by control charts for the sample range , 2011, Qual. Reliab. Eng. Int..