Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions

We review recent reports of solvothermal or hydrothermal procedures for the preparation of isolated nanoparticles of some important oxide and chalcogenide materials. The synthetic procedures listed here have the advantages of being relatively inexpensive in terms of the solvents used, arguably green (when water is the solvent) and amenable to scale-up. Handling or processing under inert conditions are rarely called for. We include descriptions of work involving the preparation of capped quantum dots using solvothermal techniques as well as microwave-hydrothermal routes and flow-hydrothermal routes that allow continuous and rapid processing of nanoparticulate materials.

[1]  Edward Lester,et al.  Continuous hydrothermal synthesis of inorganicmaterials in a near-critical water flow reactor; the one-step synthesisof nano-particulate Ce1 − xZrxO2(x = 0–1)solid solutions , 2001 .

[2]  P. O’Brien,et al.  A simple one phase preparation of organically capped gold nanocrystals , 2000 .

[3]  J. Smith,et al.  Introduction to chemical engineering thermodynamics , 1949 .

[4]  Xianhui Chen,et al.  Low‐Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides. , 2001 .

[5]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[6]  Y. Qian,et al.  Preparation and characterization of nanocrystalline Cu2–xSe by a novel solvothermal pathway , 1998 .

[7]  R. Fan,et al.  Low-Temperature Hydrothermal Synthesis of Transition Metal Dichalcogenides , 2001 .

[8]  Shuhong Yu Hydrothermal/Solvothermal Processing of Advanced Ceramic Materials , 2001 .

[9]  Jian Yang,et al.  Shape Control and Characterization of Transition Metal Diselenides MSe2 (M = Ni, Co, Fe) Prepared by a Solvothermal-Reduction Process , 2001 .

[10]  Yadong Li,et al.  Low-Temperature Elemental-Direct-Reaction Route to II—VI Semiconductor Nanocrystalline ZnSe and CdSe. , 2001 .

[11]  Y. Qian,et al.  A convenient, low temperature route to nanocrystalline SnSe , 1999 .

[12]  B. Liu,et al.  Enhanced Photoluminescence and Characterization of Mn-Doped ZnS Nanocrystallites Synthesized in Microemulsion , 1997 .

[13]  Y. Qian,et al.  Self-Regulation Synthesis of Nanocrystalline ZnGa2O4 by Hydrothermal Reaction , 1998 .

[14]  Z. Deng,et al.  Low-temperature elemental-direct-reaction route to II-VI semiconductor nanocrystalline ZnSe and CdSe. , 2001, Inorganic chemistry.

[15]  Y. Qian,et al.  A solvothermal route to wurtzite ZnSe nanoparticles , 2000 .

[16]  Y. Qian,et al.  Synthesis and characterization of nanocrystalline Bi2Se3 by solvothermal method , 1999 .

[17]  Y. Qian Solvothermal Synthesis of Nanocrystalline III–V Semiconductors , 1999 .

[18]  T. Inui,et al.  Transparent colloidal solution of 2 nm ceria particles , 1999 .

[19]  M. Rajamathi,et al.  A solvothermal route to capped CdSe nanoparticles , 2001 .

[20]  Jane F. Bertone,et al.  Synthesis of TiO2 Nanocrystals by Nonhydrolytic Solution-Based Reactions , 1999 .

[21]  Yadong Li,et al.  Solvothermal Co-reduction Route to the Nanocrystalline III−V Semiconductor InAs , 1997 .

[22]  Y. Xiong,et al.  A solvent-reduction and surface-modification technique to morphology control of tetragonal In2S3 nanocrystals , 2002 .

[23]  Yuhan Sun,et al.  Stable nanocrystalline zirconia sols prepared by a novel method: Alcohol thermal synthesis , 2000 .

[24]  J. Zhan,et al.  Hydrazine-controlled hydrothermal synthesis of Co_9S_8 from a homogeneous solution , 1999 .

[25]  M. Rajamathi,et al.  A solvothermal route to capped nanoparticles of γ-Fe2O3 and CoFe2O4 , 2001 .

[26]  J. Klinowski,et al.  Recent Advances in Zeolite Science: Proceedings of the 1989 Meeting of the British Zeolite Association, Cambridge, April 17-19, 1989 , 1989 .

[27]  T. Moritz,et al.  Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization , 1999 .

[28]  Shi Erwei,et al.  Influence of solution concentration on the hydrothermal preparation of titania crystallites , 2001 .

[29]  Edward Lester,et al.  A continuous and clean one-step synthesis of nano-particulate Ce1−xZrxO2 solid solutions in near-critical water , 2000 .

[30]  S. Feng,et al.  Microemulsion-mediated hydrothermal synthesis and characterization of nanosize rutile and anatase particles , 1999 .

[31]  T. Kitamura,et al.  Novel synthesis of phase-pure nano-particulate anatase and rutile TiO2 using TiCl4 aqueous solutions , 2002 .

[32]  Yadong Li,et al.  A Solvothermal Elemental Reaction To Produce Nanocrystalline ZnSe , 1998 .

[33]  Y. Qian,et al.  A mild solvothermal route to chalcopyrite quaternary semiconductor CuIn(SexS1 − x)2 nanocrystallites , 2001 .

[34]  A. P. Alivisatos,et al.  A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides , 1999 .

[35]  Jian Yang,et al.  Controllable synthesis of nanocrystalline CdS with different morphologies and particle sizes by a novel solvothermal process , 1999 .

[36]  Y. Qian,et al.  Synthesis of nanocrystalline CuMS2 (M = In or Ga) through a solvothermal process. , 2000, Inorganic chemistry.

[37]  M. Hirano Hydrothermal synthesis and characterization of ZnGa2O4 spinel fine particles , 2000 .

[38]  D. Breck Recent Advances in Zeolite Science , 1974 .

[39]  Junqing Hu,et al.  Solvothermal reaction route to nanocrystalline semiconductors AgMS2 (M=Ga, In) , 1999 .

[40]  Y. Qian,et al.  Self-Regulation Synthesis of Nanocrystalline ZnGa2O4 by Hydrothermal Reaction. , 1998 .

[41]  Y. Qian,et al.  Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles , 1999 .