A MILP formulation for generalized geometric programming using piecewise-linear approximations

Generalized geometric programming (GGP) problems are converted to mixed-integer linear programming (MILP) problems using piecewise-linear approximations. Our approach is to approximate a multiple-term log-sum function of the form log (x1 + x2 + ⋅⋅⋅ + xn) in terms of a set of linear equalities or inequalities of log x1, log x2, …, and log xn, where x1, …, xn are strictly positive. The advantage of this approach is its simplicity and readiness to implement and solve using commercial MILP solvers. While MILP problems in general are no easier than GGP problems, this approach is justified by the phenomenal progress of computing power of both personal computers and commercial MILP solvers. The limitation of this approach is discussed along with numerical tests.

[1]  Christodoulos A. Floudas,et al.  APOGEE: Global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes , 2011, Comput. Chem. Eng..

[2]  Jung-Fa Tsai,et al.  Range reduction techniques for improving computational efficiency in global optimization of signomial geometric programming problems , 2012, Eur. J. Oper. Res..

[3]  Yuan Ma,et al.  A robust algorithm for generalized geometric programming , 2008, J. Glob. Optim..

[4]  X. M. Martens,et al.  Comparison of generalized geometric programming algorithms , 1978 .

[5]  Christodoulos A. Floudas,et al.  Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations , 2012, Mathematical Programming.

[6]  Yanjun Wang,et al.  A deterministic global optimization algorithm for generalized geometric programming , 2005, Appl. Math. Comput..

[7]  Lakshman S. Thakur,et al.  Solving highly nonlinear convex separable programs using successive approximation , 1984, Comput. Oper. Res..

[8]  Arthur M. Geoffrion,et al.  Objective function approximations in mathematical programming , 1977, Math. Program..

[9]  Christodoulos A. Floudas,et al.  Continuous‐time modeling and global optimization approach for scheduling of crude oil operations , 2012 .

[10]  Lakshman S. Thakur Error analysis for convex separable programs: Bounds on optimal and dual optimal solutions , 1980 .

[11]  Hao-Chun Lu,et al.  An efficient convexification method for solving generalized geometric problems , 2012 .

[12]  J. Ecker,et al.  A modified concave simplex algorithm for geometric programming , 1975 .

[13]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[14]  Yi-Chung Hu,et al.  On generalized geometric programming problems with non-positive variables , 2007, Eur. J. Oper. Res..

[15]  Ron S. Dembo,et al.  A set of geometric programming test problems and their solutions , 1976, Math. Program..

[16]  Peiping Shen,et al.  Branch-reduction-bound algorithm for generalized geometric programming , 2013, J. Glob. Optim..

[17]  Hua Zhou,et al.  MM algorithms for geometric and signomial programming , 2014, Math. Program..

[18]  Han-Lin Li,et al.  Global Optimization for Generalized Geometric Programs with Mixed Free-Sign Variables , 2009, Oper. Res..

[19]  M. Avriel,et al.  An extension of geometric programming with applications in engineering optimization , 1971 .

[20]  T. Westerlund,et al.  Convexification of different classes of non-convex MINLP problems , 1999 .

[21]  Tapio Westerlund,et al.  Convex underestimation strategies for signomial functions , 2009, Optim. Methods Softw..

[22]  Lakshman S. Thakur,et al.  Error Analysis for Convex Separable Programs: The Piecewise Linear Approximation and The Bounds on The Optimal Objective Value , 1978 .

[23]  Gongxian Xu,et al.  Global optimization of signomial geometric programming problems , 2014, Eur. J. Oper. Res..

[24]  Han-Lin Li,et al.  Treating Free Variables in Generalized Geometric Global Optimization Programs , 2005, J. Glob. Optim..

[25]  Kaj-Mikael Björk,et al.  Some convexifications in global optimization of problems containing signomial terms , 2003, Comput. Chem. Eng..

[26]  Peiping Shen,et al.  Linearization method of global optimization for generalized geometric programming , 2005, Appl. Math. Comput..

[27]  Faruk Güder,et al.  Optimal objective function approximation for separable convex quadratic programming , 1994, Math. Program..

[28]  Shaojian Qu,et al.  A global optimization using linear relaxation for generalized geometric programming , 2008, Eur. J. Oper. Res..

[29]  C. Floudas,et al.  Global Optimization in Generalized Geometric Programming , 1997, Encyclopedia of Optimization.

[30]  Chrysanthos E. Gounaris,et al.  Computational Comparison of Piecewise−Linear Relaxations for Pooling Problems , 2009 .

[31]  Lakshman S. Thakur,et al.  Successive approximation in separable programming: an improved procedure for convex separable programs , 1986 .

[32]  Christodoulos A. Floudas,et al.  Global Optimization of Large-Scale Generalized Pooling Problems: Quadratically Constrained MINLP Models , 2010 .