BROWNIAN PARTICLES WITH ELECTROSTATIC REPULSION ON THE CIRCLE: DYSON'S MODEL FOR UNITARY RANDOM MATRICES REVISITED
暂无分享,去创建一个
[1] P. Lions,et al. Stochastic differential equations with reflecting boundary conditions , 1984 .
[2] R. Pinsky. ON THE CONVERGENCE OF DIFFUSION PROCESSES CONDITIONED TO REMAIN IN A BOUNDED REGION FOR LARGE TIME TO LIMITING POSITIVE RECURRENT DIFFUSION PROCESSES , 1985 .
[3] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[4] Yasumasa Saisho,et al. Stochastic differential equations for multi-dimensional domain with reflecting boundary , 1987 .
[5] Emmanuel Cépa,et al. Diffusing particles with electrostatic repulsion , 1997 .
[6] H. McKean. STOCHASTIC INTEGRAL EQUATIONS ( d = 1) , 1969 .
[7] Ioannis Karatzas,et al. Brownian Motion and Stochastic Calculus , 1987 .
[8] E. Cépa. Problème de Skorohod multivoque , 1998 .
[9] F. Schlögl. D. Williams: Diffusion, Markov Processes, and Martingales, Vol. I: Foundations. John Wiley & Sons, Chichester, New York, Brisbane, Toronto 1979. 237 Seiten, Preis: £ 13.50 , 1980 .
[10] G. Lawler,et al. The geometry of the Brownian curve , 1993 .
[11] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[12] Wendelin Werner,et al. Non-Colliding Brownian Motions on the Circle , 1996 .
[13] A. Sznitman. Topics in propagation of chaos , 1991 .
[14] Emmanuel Cépa. Équations différentielles stochastiques multivoques , 1994 .
[15] François Bouchut,et al. A NON-LINEAR STOCHASTIC DIFFERENTIAL EQUATION INVOLVING THE HILBERT TRANSFORM , 1999 .
[16] David J. Grabiner. Brownian Motion in a Weyl Chamber, Non-Colliding Particles, and Random Matrices , 1997, math/9708207.
[17] L. Rogers,et al. Diffusions, Markov processes, and martingales , 1979 .
[18] W. Feller. Diffusion processes in one dimension , 1954 .
[19] M. Métivier,et al. Quelques problemes lies aux systemes infinis de particules et leurs limites , 1986 .
[20] F. Dyson. A Brownian‐Motion Model for the Eigenvalues of a Random Matrix , 1962 .
[21] Pierre Bernard,et al. Lectures on Probability Theory and Statistics: Ecole d'Ete de Probabilites de Saint-Flour XXVI - 1996 , 1997 .
[22] L. Rogers,et al. Interacting Brownian particles and the Wigner law , 1993 .
[23] Hiroshi Tanaka. Stochastic differential equations with reflecting boundary condition in convex regions , 1979 .
[24] Hiroshi Tanaka,et al. A diffusion process in a singular mean-drift-field , 1985 .
[25] Terence Chan. The Wigner semi-circle law and eigenvalues of matrix-valued diffusions , 1992 .