Stationary damage modelling of poroelastic contact

This paper introduces the concept of stationary damage as a means for examining the mechanical behaviour of fluid saturated media that are susceptible to alteration in their elastic and fluid transport characteristics, while maintaining the essential poroelastic character of the medium. In this study, the effects of elastic damage and the attendant alterations in the hydraulic conductivity characteristics of the poroelastic medium are modelled. Investigations of this behaviour suggest that the damage-induced alterations of both stiffness and hydraulic conductivity remain sensibly constant from the state achieved during the initial damage. This suggests the applicability of a stationary damage concept where the initial damage-induced alteration of the poroelastic characteristics leads to a poroelastic medium that is both elastically and hydraulically inhomogeneous. The initial inhomogeneous state for the poroelastic medium can be conveniently determined by considering solutions to the associated elasticity problem. The proposed methodology is applied to examine, computationally, certain classical contact problems for a poroelastic medium susceptible to elastic damage.

[1]  Herbert F. Wang Theory of Linear Poroelasticity with Applications to Geomechanics and Hydrogeology , 2000 .

[2]  R. Rajapakse,et al.  Dynamics of a rigid strip bonded to a multilayered poroelastic medium , 1996 .

[3]  Bernhard A. Schrefler,et al.  Simulation of damage-permeability coupling in hygro-thermo mechanical analysis of concrete at high temperature , 2002 .

[4]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[5]  A.P.S. Selvadurai,et al.  Computational modelling of isothermal consolidation of fractured porous media , 1995 .

[6]  I. N. Sneddon Boussinesq's problem for a flat-ended cylinder , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  H. Kern,et al.  Evolution of dilatancy and permeability in rock salt during hydrostatic compaction and triaxial deformation , 2001 .

[8]  A.P.S. Selvadurai,et al.  On the indentation of a poroelastic layer , 1994 .

[9]  On the mechanics of a rigid disc inclusion embedded in a fluid saturated poroelastic medium , 1995 .

[10]  A. Lurie,et al.  Three-dimensional problems in the theory of elasticity , 2005 .

[11]  Paul Christiano,et al.  Steady‐state harmonic response of a rigid plate bearing on a liquid‐saturated poroelastic halfspace , 1986 .

[12]  G. Gudehus,et al.  Finite Elements in Geomechanics , 1978 .

[13]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—II. Computational aspects , 1987 .

[14]  L. E. Goodman Development of the Three-Dimensional Theory of Elasticity , 1974 .

[15]  J. Cripps,et al.  An investigation of the permeability of Yorkshire Chalk under differing pore water and confining pressure conditions , 1982 .

[16]  J. Lemaître How to use damage mechanics , 1984 .

[17]  Evaluation of higher order, mixed and Hermitean finite element procedures for dynamic analysis of saturated porous media using one‐dimensional models , 1986 .

[18]  J. Thimus Poromechanics : a tribute to Maurice A. Biot : proceedings of the Biot Conference on Poromechanics, Louvain-la-Neuve/Belgium /14-16 September 1998 , 1998 .

[19]  C. A. Tang,et al.  Coupled analysis of flow, stress and damage (FSD) in rock failure , 2002 .

[20]  M. Paterson Experimental Rock Deformation: The Brittle Field , 1978 .

[21]  A. Cheng,et al.  Fundamentals of Poroelasticity , 1993 .

[22]  Jian-Fu Shao,et al.  Time dependent continuous damage model for deformation and failure of brittle rock , 1997 .

[23]  Gunter Swoboda,et al.  DAMAGE MODEL FOR JOINTED ROCK MASS AND ITS APPLICATION TO TUNNELLING , 1998 .

[24]  Eric Bourdarot,et al.  Poro-Damage Approach Applied to Hydro-Fracture Analysis of Concrete , 2000 .

[25]  T. Kiyama,et al.  Permeability In Anisotropic Granite Under Hydrostatic Compression And Triaxial Compression Including Post-failure Region , 1996 .

[26]  A. Selvadurai Fracture evolution during indentation of a brittle elastic solid , 2000 .

[27]  Teng-fong Wong,et al.  The transition from brittle faulting to cataclastic flow: Permeability evolution , 1997 .

[28]  R. Wong,et al.  Effective Moduli of Microcracked Rocks: Theories and Experiments , 1997 .

[29]  M. Dusseault,et al.  Deformation and diffusion behaviour in a solid experiencing damage: a continuous damage model and its numerical implementation , 1993 .

[30]  M. Zoback,et al.  The effect of microcrack dilatancy on the permeability of westerly granite , 1975 .

[31]  A.P.S. Selvadurai,et al.  Axisymmetric Indentation of a Multilayered Poroelastic Solid , 1996 .

[32]  Bernhard A. Schrefler,et al.  Mapped infinite elements in soil consolidation , 1987 .

[33]  Musharraf Zaman,et al.  Numerical modeling of stress-dependent permeability , 1997 .

[34]  H. Kern,et al.  Development of damage and permeability in deforming rock salt , 2001 .

[35]  Zdenik P Baiant,et al.  Mechanics of distributed cracking , 2022 .

[36]  M. Kassir,et al.  Interaction functions of a rigid strip bonded to saturated elastic half-space , 1988 .

[37]  David A. Pecknold,et al.  Inelastic Response of Reinforced Concrete Columns Subjected to Two-Dimensional Earthquake Motions , 1978 .

[38]  J.-A. Wang,et al.  Fluid permeability of sedimentary rocks in a complete stress–strain process , 2002 .

[39]  I. N. Sneddon,et al.  The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[40]  E. Wilson,et al.  Flow of compressible fluid in porous elastic media , 1973 .

[41]  Zdeněk P. Bažant,et al.  Cracking and damage: strain localization and size effect , 1989 .

[42]  Gilles Pijaudier-Cabot,et al.  CONTINUUM DAMAGE THEORY - APPLICATION TO CONCRETE , 1989 .

[43]  N. Cook,et al.  THE FAILURE OF ROCK , 1965 .

[44]  W. Xie,et al.  Effect of confining presurre, pore pressure and specimen dimension on permeability of Yinzhuang Sandstone , 1997 .

[45]  Zhou Gang,et al.  Permeability-strain equations corresponding to the complete stress—strain path of Yinzhuang Sandstone , 1994 .

[46]  F. P. Glushikhin,et al.  Modelling in Geomechanics , 2022 .

[47]  F. Sidoroff,et al.  Description of Anisotropic Damage Application to Elasticity , 1981 .

[48]  On the asymmetric indentation of a consolidating poroelastic half space , 1994 .

[49]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[50]  Maurice B. Dusseault,et al.  A continuum damage mechanics model for geomaterials , 2004 .

[51]  A. Fischer-Cripps,et al.  Introduction to Contact Mechanics , 2000 .

[52]  A. Selvadurai,et al.  Enhanced consolidation in brittle geomaterials susceptible to damage , 1998 .

[53]  N. A. Chandler,et al.  The progressive fracture of Lac du Bonnet granite , 1994 .

[54]  Z. Bažant,et al.  Fracture and Size Effect in Concrete and Other Quasibrittle Materials , 1997 .

[55]  A.P.S. Selvadurai The biharmonic equation, Poisson's equation , 2000 .

[56]  J. Chaboche,et al.  Mechanics of Solid Materials , 1990 .

[57]  M. Dusseault,et al.  Evaluation of formation damage from a constant-head borehole test , 1997 .

[58]  Kenneth C. Hover,et al.  Influence of microcracking on the mass transport properties of concrete , 1992 .

[59]  J. R. Booker,et al.  THE TIME-SETTLEMENT BEHAVIOUR OF A RIGID DIE RESTING ON A DEEP CLAY LAYER , 1975 .

[60]  J. Stormont Gas permeability changes in rock salt during deformation. , 1992 .

[61]  D. C. Spooner,et al.  A quantitative assessment of damage sustained in concrete during compressive loading , 1975 .

[62]  Robert Mundt Über die Berührung fester elastischer Körper: Eine allgemeinverständliche Darstellung der Theorie von Heinrich Hertz , 1950 .

[63]  J. Oden,et al.  Finite Element Methods for Flow Problems , 2003 .

[64]  Interacting indentors on a poroelastic half-space , 1996 .

[65]  A.P.S. Selvadurai,et al.  COMPOSITE INFINITE ELEMENT FOR MODELING UNBOUNDED SATURATED-SOIL MEDIA , 1989 .

[66]  I. N. Sneddon The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile , 1965 .

[67]  B. Atkinson Fracture Mechanics of Rock , 1987 .

[68]  A. Skempton THE PORE-PRESSURE COEFFICIENTS A AND B , 1954 .

[69]  Françoise Homand,et al.  Damage-induced permeability changes in granite: a case example at the URL in Canada , 2001 .

[70]  A. J. Philippacopoulos,et al.  Axisymmetric Vibration of Disk Resting on Saturated Layered Half-Space , 1989 .

[71]  Z. Bažant FRACTURE MECHANICS OF CONCRETE STRUCTURES , 1992 .

[72]  K. Johnson,et al.  Three-Dimensional Elastic Bodies in Rolling Contact , 1990 .

[73]  Lennart Elfgren,et al.  Fracture mechanics of concrete structures : from theory to applications : report of the Technical Committee 90-FMA Fracture Mechanics to Concrete/Applications, RILEM (the International Union of Testing and Research Laboratories for Materials and Structures) , 1989 .

[74]  R. de Boer,et al.  Theory of Porous Media , 2020, Encyclopedia of Continuum Mechanics.

[75]  A. Selvadurai,et al.  Computational modelling of steady crack extension in poroelastic media , 1998 .

[76]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[77]  Douglas F. Hambley,et al.  Mechanics of Porous Media , 1996 .

[78]  B. Schrefler,et al.  The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media , 1998 .

[79]  L. Costin 5 – TIME-DEPENDENT DEFORMATION AND FAILURE , 1987 .

[80]  J. B. Walsh,et al.  Permeability of granite under high pressure , 1968 .

[81]  Craig J. Hickey,et al.  Mechanics of porous media , 1994 .

[82]  J. C. Small,et al.  An investigation of the stability of numerical solutions of Biot's equations of consolidation , 1975 .

[83]  C. L. Chow,et al.  An anisotropic theory of elasticity for continuum damage mechanics , 1987 .

[84]  Z. T. Bieniawski,et al.  FAILURE OF FRACTURED ROCK , 1969 .

[85]  G. Szefer,et al.  Axisymmetric punch problem under condition of consolidation , 1975 .

[86]  Bernhard A. Schrefler,et al.  Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature , 1999 .

[87]  Contact problem for saturated poroelastic solid , 1995 .

[88]  R. D. Boer,et al.  Porous Media: Theory and Experiments , 1999 .

[89]  Surendra P. Shah,et al.  Fracture of Concrete and Rock , 1989 .

[90]  J. Nemes,et al.  An Isotropic Damage Model Based on a Tensorial Representation of Damage , 1999 .

[91]  George Z. Voyiadjis,et al.  Damage mechanics in engineering materials , 1998 .

[92]  G. Gladwell Contact Problems in the Classical Theory of Elasticity , 1980 .

[93]  V. M. Aleksandrov,et al.  Three-dimensional contact problems , 2001 .

[94]  A.P.S. Selvadurai,et al.  On Boussinesq's problem , 2001 .

[95]  J. Barbera,et al.  Contact mechanics , 1999 .

[96]  R. Cabrillac,et al.  Poroplastic damage model for claystones , 2004 .

[97]  Egidio Rizzi,et al.  Towards a general formulation of elastic degradation and damage based on a loading surface , 1994 .

[98]  A. Selvadurai,et al.  Mechanics of Poroelastic Media , 1996 .

[99]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[100]  Richard K. Moore,et al.  From theory to applications , 1986 .

[101]  John L. Tassoulas,et al.  DYNAMIC STIFFNESS OF FOUNDATIONS ON FLUID-FILLED POROELASTIC STRATUM , 1993 .

[102]  Jiann-Wen Ju,et al.  ISOTROPIC AND ANISOTROPIC DAMAGE VARIABLES IN CONTINUUM DAMAGE MECHANICS , 1990 .

[103]  Gwidon Szefer,et al.  Axisymmetric problem of the punch for the consolidating semi-space with mixed boundary permeability conditions , 1978 .

[104]  A. Gangi,et al.  Variation of whole and fractured porous rock permeability with confining pressure , 1978 .

[105]  A. Selvadurai,et al.  Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poisson's Equation , 2000 .