A combined model of mass transfer coefficients for contaminated drop liquid‐liquid systems

Mass transfer rates to and from drops in liquid-liquid extraction equipment are often likely to be reduced by the presence of surface active contaminants. For industrial column design circumstances it is ideally required to account for the extent of contamination in a quantitative manner yet existing design procedures do not allow this to be done for the typical intermediate Reynolds number region of 10 to 100. A method is proposed for correcting continuous phase and drop mass transfer coefficients for the deleterious effects of contamination using only one contamination parameter which needs to be determined experimentally. Les taux de transfert de matiere des gouttes ou vers les gouttes dans un systeme d'extraction liquide-liquide peuvent souvent ětre reduits par la presence de contaminants de surface actifs. Pour la conception d'une colonne industrielle, idealement, il est necessaire de tenir compte de l'ampleur de la contamination de facon quantitative alors que les procedures de conception existantes ne le permettent pas pour les nombres de Reynolds intermediaires de 10 a 100. On propose donc une methode visant a corriger les coefficients de transfert de matiere des gouttes et de la phase gaseuse pour les effets nocifs de lacontamination basee sur un parametre de contamination unique a determiner experimentalement.

[1]  J. Newman RETARDATION OF FALLING DROPS , 1967 .

[2]  Thomas Baron,et al.  Mass and heat transfer from drops in liquid‐liquid extraction , 1957 .

[3]  S. Skinner,et al.  The mechanism of liquid-liquid extraction across stationary and moving interfaces: Part I. Mass transfer into single dispersed drops , 1952 .

[4]  B. T. Chao,et al.  Motion of Spherical Gas Bubbles in a Viscous Liquid at Large Reynolds Numbers , 1962 .

[5]  H. Y. Cheh,et al.  Mass Transfer to Spherical Drops or Bubbles at High Reynolds Number , 1967 .

[6]  T. Sherwood,et al.  Extraction in Spray and Packed Columns , 1939 .

[7]  A. Hamielec,et al.  Mass transfer inside drops , 1960 .

[8]  J. B. Conway,et al.  Mechanism of Solute Transfer in Spray Towers , 1950 .

[9]  R. J. Brunson,et al.  Mass transfer within oscillating liquid droplets , 1970 .

[10]  C. J. King The additivity of individual phase resistances in mass transfer operations , 1964 .

[11]  R. Kronig,et al.  On the theory of extraction from falling droplets II , 1951 .

[12]  M. Weber Mass Transfer from Spherical Drops at High Reynolds Numbers , 1975 .

[13]  R. M. Griffith Mass transfer from drops and bubbles , 1960 .

[14]  M. Baird,et al.  Drop phase mass transfer coefficients for liquid—liquid systems and the influence of packings , 1988 .

[15]  L. Mekasut,et al.  Effects of surface-active agents on mass transfer inside drops , 1979 .

[16]  F. H. Garner,et al.  Mechanism of Solute Transfer from Droplets , 1954 .

[17]  N. Frossling,et al.  Uber die Verdunstung fallender Tropfen , 1938 .

[18]  L. Steiner Mass-transfer rates from single drops and drop swarms , 1986 .

[19]  K. Sutherland,et al.  TRANSFER FROM A SPHERE INTO A FLUID IN LAMINAR FLOW , 1960 .

[20]  L. Mekasut,et al.  Effects of surfactants on mass transfer outside drops , 1978 .

[21]  P. Calderbank,et al.  Circulation in liquid drops: (A heat-transfer study) , 1956 .

[22]  A. Lochiel The influence of surfactants on mass transfer around spheres , 1965 .

[23]  Allan Beitel,et al.  Surfactant effects on mass transfer from drops subject to interfacial instability , 1971 .

[24]  S. Winnikow The heat and mass transfer from a fluid sphere at large reynolds and peclet number , 1968 .

[25]  L. Boyadzhiev,et al.  On liquid‐liquid mass transfer inside drops in a turbulent flow field , 1969 .