Sparse Matrix Ordering with SCOTCH

Finding good orderings is a critical issue for the efficient factorization of sparse symmetric matrices, both in terms of space usage and solution time. Several ordering techniques have been proposed, among which nested dissection is gaining increasing popularity, due to its suitability for parallel solving.

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[3]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[4]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[5]  Iain S. Duff,et al.  On Algorithms for Obtaining a Maximum Transversal , 1981, TOMS.

[6]  Charles M. Fiduccia,et al.  A linear-time heuristic for improving network partitions , 1988, 25 years of DAC.

[7]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[8]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[9]  John G. Lewis,et al.  Orderings for Parallel Sparse Symmetric Factorization , 1987, PP.

[10]  Michael T. Heath,et al.  Sparse Cholesky factorization on a local-memory multiprocessor , 1988 .

[11]  P. Charrier,et al.  Algorithmique et calculs de complexité pour un solveur de type dissections emboîtées , 1989 .

[12]  Joseph W. H. Liu,et al.  A Comparison of Three Column-Based Distributed Sparse Factorization Schemes. , 1990 .

[13]  Alex Pothen,et al.  Computing the block triangular form of a sparse matrix , 1990, TOMS.

[14]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[15]  Robert Schreiber,et al.  Scalability of Sparse Direct Solvers , 1993 .

[16]  A. Gupta,et al.  An efficient block-oriented approach to parallel sparse Cholesky factorization , 1993, Supercomputing '93.

[17]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[18]  Robert Schreiber,et al.  Improved load distribution in parallel sparse Cholesky factorization , 1994, Proceedings of Supercomputing '94.

[19]  F. Pellegrini,et al.  Static mapping by dual recursive bipartitioning of process architecture graphs , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[20]  Edward Rothberg Performance of Panel and Block Approaches to Sparse Cholesky Factorization on the iPSC/860 and Paragon Multicomputers , 1996, SIAM J. Sci. Comput..

[21]  Jean Roman,et al.  SCOTCH: A Software Package for Static Mapping by Dual Recursive Bipartitioning of Process and Architecture Graphs , 1996, HPCN Europe.

[22]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[23]  F. Pellegrini Application of graph partitioning techniques to static mapping and domain decomposition , 1996 .

[24]  Vipin Kumar,et al.  Parallel Multilevel k-way Partitioning Scheme for Irregular Graphs , 1996, Proceedings of the 1996 ACM/IEEE Conference on Supercomputing.

[25]  Vipin Kumar,et al.  Highly Scalable Parallel Algorithms for Sparse Matrix Factorization , 1997, IEEE Trans. Parallel Distributed Syst..

[26]  Vipin Kumar,et al.  Scalable Parallel Algorithms for Sparse Linear Systems , 1997 .

[27]  F. Pellegrini,et al.  Scotch 3.1 User's Guide , 1997 .

[28]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[29]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..