New Spectral Lower Bounds on the Bisection Width of Graphs
暂无分享,去创建一个
[1] M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .
[2] F. Leighton,et al. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .
[3] Alex Pothen,et al. PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .
[4] Gary L. Miller,et al. On the performance of spectral graph partitioning methods , 1995, SODA '95.
[5] Moshe Morgenstern,et al. Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q , 1994, J. Comb. Theory, Ser. B.
[6] Frank Thomson Leighton,et al. Graph bisection algorithms with good average case behavior , 1984, Comb..
[7] Béla Bollobás,et al. The Isoperimetric Number of Random Regular Graphs , 1988, Eur. J. Comb..
[8] Bojan Mohar,et al. Isoperimetric numbers of graphs , 1989, J. Comb. Theory, Ser. B.
[9] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .
[10] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[11] F. Thomson Leighton,et al. ARRAYS AND TREES , 1992 .
[12] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[13] Alexandr V. Kostochka,et al. On a lower bound for the isoperimetric number of cubic graphs , 1993 .
[14] A. Nilli. On the second eigenvalue of a graph , 1991 .
[15] Patrick Chiu,et al. Cubic Ramanujan graphs , 1992, Comb..
[16] Shang-Hua Teng,et al. Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.