Hole-based memory operation in an InAs/GaAs quantum dot heterostructure

We present an InAs/GaAs quantum dot (QD) memory structure with all-electrical data access which uses holes as charge carriers. Charging and discharging of the QDs are clearly controlled by a gate voltage. The stored information is read-out by a two-dimensional hole gas underneath the QD-layer. Time resolved drain-current-measurements demonstrate the memory operation. Present write times are 80 ns.

[1]  T. Fukui,et al.  Fabrication of one-dimensional GaAs channel-coupled InAs quantum dot memory device by selective-area metal-organic vapor phase epitaxy , 2005 .

[2]  Piero Olivo,et al.  Flash memory cells-an overview , 1997, Proc. IEEE.

[3]  K. Saitoh,et al.  Room-temperature operation of a memory-effect AlGaAs/GaAs heterojunction field-effect transistor with self-assembled InAs nanodots , 2000 .

[4]  Axel Lorke,et al.  Role of quantum capacitance in coupled low-dimensional electron systems , 2006 .

[5]  A. Marent,et al.  Hole capture into self-organized InGaAs quantum dots , 2006 .

[6]  L. Samuelson,et al.  Case study of an InAs quantum dot memory: Optical storing and deletion of charge , 2001 .

[7]  D. Bimberg,et al.  Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory , 1999 .

[8]  Kailash Gopalakrishnan,et al.  Overview of candidate device technologies for storage-class memory , 2008, IBM J. Res. Dev..

[9]  R. Dingle,et al.  Electron mobilities in modulation‐doped semiconductor heterojunction superlattices , 1978 .

[10]  D. Bimberg,et al.  A write time of 6ns for quantum dot–based memory structures , 2008 .

[11]  G. Vincent,et al.  Electric field effect on the thermal emission of traps in semiconductor junctions , 1979 .

[12]  Andrei Schliwa,et al.  Few-particle energies versus geometry and composition of In x Ga 1-x As/GaAs self-organized quantum dots , 2009 .

[13]  D. Bimberg,et al.  106years extrapolated hole storage time in GaSb∕AlAs quantum dots , 2007 .

[14]  D. Bimberg,et al.  Temperature and electric field dependence of the carrier emission processes in a quantum dot-based memory structure , 2009 .

[15]  Axel Lorke,et al.  Using a two-dimensional electron gas to study nonequilibrium tunneling dynamics and charge storage in self-assembled quantum dots , 2009 .

[16]  Wen-Hao Chang,et al.  Hole emission processes in InAs/GaAs self-assembled quantum dots , 2002 .

[17]  A. Rack,et al.  Dynamical bistability in quantum-dot structures: Role of Auger processes , 2002 .

[18]  Axel Lorke,et al.  Quantum dot electrons as controllable scattering centers in the vicinity of a two-dimensional electron gas , 2006 .

[19]  G. Abstreiter,et al.  Electrical detection of optically induced charge storage in self-assembled InAs quantum dots , 1998 .

[20]  M. Missous,et al.  Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures , 2004 .

[21]  V.V. Zhirnov,et al.  Memory technology for post CMOS era , 2005, IEEE Circuits and Devices Magazine.

[22]  D. Bimberg,et al.  Carrier storage time of milliseconds at room temperature in self-organized quantum dots , 2006 .

[23]  S. Höfling,et al.  Room temperature memory operation of a single InAs quantum dot layer in a GaAs∕AlGaAs heterostructure , 2008 .