MathematicS In Action

© Société de Mathématiques Appliquées et Industrielles, 2008, tous droits réservés. L’accès aux articles de la revue « MathematicS In Action » (http://msia.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://msia.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

[1]  Masafumi Yamashita,et al.  Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 1999, SIAM J. Comput..

[2]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[3]  T. Vicsek,et al.  Spontaneously ordered motion of self-propelled particles , 1997, cond-mat/0611741.

[4]  Pedro Elosegui,et al.  Extension of the Cucker-Smale Control Law to Space Flight Formations , 2009 .

[5]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[6]  Felipe Cucker,et al.  Best Choices for Regularization Parameters in Learning Theory: On the Bias—Variance Problem , 2002, Found. Comput. Math..

[7]  Seung-Yeal Ha,et al.  A simple proof of the Cucker-Smale flocking dynamics and mean-field limit , 2009 .

[8]  Jianhong Shen,et al.  Cucker–Smale Flocking under Hierarchical Leadership , 2006, q-bio/0610048.

[9]  G. F.,et al.  From individuals to aggregations: the interplay between behavior and physics. , 1999, Journal of theoretical biology.

[10]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[11]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[12]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[13]  S. Smale,et al.  On the mathematics of emergence , 2007 .

[14]  A. Ōkubo,et al.  MODELLING SOCIAL ANIMAL AGGREGATIONS , 1994 .

[15]  Richard M. Murray,et al.  INFORMATION FLOW AND COOPERATIVE CONTROL OF VEHICLE FORMATIONS , 2002 .

[16]  C. Breder Equations Descriptive of Fish Schools and Other Animal Aggregations , 1954 .

[17]  I. Kevrekidis,et al.  Coarse-grained analysis of stochasticity-induced switching between collective motion states , 2007, Proceedings of the National Academy of Sciences.

[18]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[19]  Francesco Bullo,et al.  Esaim: Control, Optimisation and Calculus of Variations Spatially-distributed Coverage Optimization and Control with Limited-range Interactions , 2022 .

[20]  K. Warburton,et al.  Tendency-distance models of social cohesion in animal groups. , 1991, Journal of Theoretical Biology.

[21]  A. Ōkubo Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. , 1986, Advances in biophysics.

[22]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[23]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[24]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[25]  Kevin M. Passino,et al.  Stability analysis of swarms , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[26]  Werner Ebeling,et al.  Noise-induced transition from translational to rotational motion of swarms. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  T. Vicsek,et al.  Collective behavior of interacting self-propelled particles , 2000, cond-mat/0611742.