Prediction of Water Quality in the Danube River Under extreme Hydrological and Temperature Conditions One of the requirements imposed by the Water Framework Directive (WFD, 2000/60/EC) is to analyze and predict how quality of surface waters will evolve in the future. In assessing the development of a stream's pollution one must consider all sources of pollution and understand how water quality evolves over time. Flow and water temperature regime of a stream or river are the main factors controlling the extent to which deterioration of a stream's water quality can propagate under constant input from pollution sources. In addition, there is ever increasing public concern about the state of the aquatic environment. Decision makers and scientists involved in water management call for studies proposing simulation models of water quality under extreme natural hydrologic and climatic scenarios. Also, human impact on water resources remain an issue for discussion, especially when it comes to sustainability of water resources with respect to water quality and ecosystem health. In the present study we investigate the long-term trends in water quality variables of the Danube River at Bratislava, Slovakia (Chl-a, Ca, EC, SO2-, Cl-, O2, BOD5, N-tot, PO4-P, NO3-N, NO2-N, etc.), for the period 1991-2005. Several SARIMA models were tested for the long-term prediction of selected pollutant concentrations under various flow and water temperature conditions. In order to create scenarios of selected water quality variables with prediction for 12 months ahead, three types of possible hydrologic and water temperature conditions were defined: i) average conditions - median flows and water temperature; ii) low flows and high water temperature; and iii) high flows and low water temperature. These conditions were derived for each month using daily observations of water temperature and daily discharge readings taken in the Danube at Bratislava over the period 1931-2005 in the form of percentiles (1th-percentile, median, 99th-percentile). Once having derived these extreme-case scenarios, we used selected Box-Jenkins models (with two regressors - discharge and water temperature) to simulate the extreme monthly water quality variables. The impact of natural and man-made changes in a stream's hydrology on water quality can be readily well simulated by means of autoregressive models. Predpoveď Vybraných Ukazovateľov Kvality Vody V Dunaji Za Extrémnych Hydrologických A Teplotných Podmienok Jednou z požiadaviek Rámcovej smernice o vode (WFD, 2000/60/EC) je analýza trendov a dlhodobá predpoveď vývoja znečistenia povrchových tokov. Pri odhade vývoja znečistenia toku je potrebné brať do úvahy nielen možné zdroje znečistenia, ale je potrebné uvažovať aj s vývojom množstva vody v tokoch a so zvyšovaním teploty tokov v dôsledku očakávanej klimatickej zmeny a zmeny vo využívaní vodných zdrojov. V príspevku je analyzovaný vývoj mesačných koncentrácií vybraných ukazovateľov kvality vody v toku Dunaja v stanici Bratislava (napr. Chl-a, Ca, EC, SO2-, Cl-, O2, BSK5, N-celk, PO4-P, NO3-N, NO2-N a pod.) za obdobie r. 1991-2005. Za účelom dlhodobej predpovede koncentrácií každého ukazovateľa kvality vody sme na základe štatistických testov vybrali najlepší autoregresný Box-Jenkinsov model s dvoma regresormi: 1. prietokmi a 2. teplotami vody. Scenáre pre mesačné prietoky a mesačné teploty vody boli vytvorené pre tri stavy: i) priemerné podmienky - medián prietokov a teploty vody; ii) nízke prietoky a vysoké teploty vody; a iii) vysoké prietoky a nízke teploty vody. Tieto scenárové podmienky boli vypočítané z denných údajov z obdobia 1931-2005 ako percentily (1. percentil, medián, 99. percentil). Použijúc tieto scenáre sme vybranými Box-Jenkinsovými modelmi s dvoma regresormi simulovali extrémne mesačné hodnoty vybraných ukazovateľom kvality vody v Dunaji pre extrémne hydrologické a teplotné podmienky.
[1]
Hans Peter Nachtnebel,et al.
Suspended sediment monitoring in a fluvial environment: Advantages and limitations applying an Acoustic Doppler Current Profiler
,
1994
.
[2]
J. Bloesch.
The ultimate need for the implementation of sturgeon protection in the Danube River Basin-a view of 2006 and call for actions with the Sturgeon Action Plan under the Bern Convention
,
2006
.
[3]
P. Pekárová,et al.
NITRATE WASH OFF FROM THE BRATISLAVA FOREST PARK BASIN VYDRICA IN YEARS 1986–2005
,
2007
.
[4]
B. Parida,et al.
Performance of stochastic approaches for forecasting river water quality.
,
2001,
Water research.
[5]
P. Pekárová,et al.
Distribución espacial y tendencia de la alteración de nitrato en Slovakia durante el período 1968-1993 = Spatial distribution and trend change of nitrate in Slovakia during 1968-1993
,
1993
.
[6]
W. Hartley,et al.
Light intensity and the vertical distribution of algae in tertiary oxidation ponds
,
1970
.
[7]
U. Humpesch,et al.
Long-term trends of physical, chemical and biological variables in the River Danube 1957–1995: A statistical approach
,
1999,
Aquatic Sciences.
[8]
J. Garnier,et al.
Modelling the Transfer and Retention of Nutrients in the Drainage Network of the Danube River
,
2002
.
[9]
Radko Mesiar,et al.
Comparison of forecasting performance of nonlinear models of hydrological time series
,
2006
.
[10]
L. Soják,et al.
Volatile organic compounds in water and sediment from the Morava and the Danube Rivers (Slovakia) using purge and trap injection and gas chromatography
,
1995
.
[11]
Modeling Water Quality Trend in Long Term Time Series
,
2006
.
[12]
T. Burt,et al.
Trends in DOC concentration in Great Britain
,
2007
.
[13]
L. Somlyódy,et al.
Nutrient balances for Danube countries: A strategic analysis
,
1999
.
[14]
D. Papamichail,et al.
Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece
,
2001
.
[15]
Fred Worrall,et al.
Non‐stationarity in long time series: some curious reversals in the ‘memory’ effect
,
2007
.
[16]
J. Krizan,et al.
Water quality of Yugoslav rivers (1991–1995)
,
1997
.
[17]
J. Langhammer.
Classification of the dynamics of water quality changes in the Elbe River basin
,
2005
.
[18]
R. Romanowicz,et al.
Statistical Modeling of Algae Concentrations in the Elbe River in the Years 1985—2001 Using Observations of Daily Dissolved Oxygen, Temperature, and pH
,
2003
.
[19]
M. Komorníková,et al.
A HYBRID MODELLING FRAMEWORK FOR FORECASTING MONTHLY RESERVOIR INFLOWS
,
2008
.