Evaluation of surveillance strategies for bovine tuberculosis (Mycobacterium bovis) using an individual based epidemiological model.

[1]  M A P M van Asseldonk,et al.  Stochastic efficiency analysis of bovine tuberculosis-surveillance programs in the Netherlands. , 2005, Preventive veterinary medicine.

[2]  D F Kelton,et al.  Breakdown severity during a bovine tuberculosis episode as a predictor of future herd breakdowns in Ireland. , 2004, Preventive veterinary medicine.

[3]  J. Traniello,et al.  Nest architecture, activity pattern, worker density and the dynamics of disease transmission in social insects. , 2004, Journal of theoretical biology.

[4]  S. Rushton,et al.  Investigating the spatial dynamics of bovine tuberculosis in badger populations: evaluating an individual-based simulation model , 2003 .

[5]  Marten Scheffer,et al.  Alternative attractors may boost uncertainty and sensitivity in ecological models , 2003 .

[6]  Marten Scheffer,et al.  Charisma: a spatial explicit simulation model of submerged macrophytes , 2003 .

[7]  G. Peet,et al.  Evaluatie verplaatsingsregelingen MKZ , 2002 .

[8]  Michael P Ward,et al.  Simulation model of within-herd transmission of bovine tuberculosis in Argentine dairy herds. , 2002, Preventive veterinary medicine.

[9]  S. Cornell,et al.  Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape , 2001, Science.

[10]  S. Martin,et al.  Risk factors for tuberculosis in Irish cattle: the analysis of secondary data , 2000 .

[11]  D. Bakker,et al.  Het belang van een goede diagnostiek voor rundertuberculose , 1999 .

[12]  E. Ferri,et al.  Field evaluation of the single intradermal cervical tuberculin test and the interferon-γ assay for detection and eradication of bovine tuberculosis in Spain , 1999 .

[13]  G. Hickling,et al.  A simulation model for the spread of bovine tuberculosis within New Zealand cattle herds. , 1997, Preventive veterinary medicine.

[14]  Olivier Klepper,et al.  Multivariate aspects of model uncertainty analysis: tools for sensitivity analysis and calibration , 1997 .

[15]  D. Kleinbaum Survival Analysis: A Self-Learning Text , 1997 .

[16]  M. D. Jong,et al.  Mathematical modelling in veterinary epidemiology: why model building is important , 1995 .

[17]  A. Davis,et al.  Comparison of the sensitivity of the caudal fold skin test and a commercial gamma-interferon assay for diagnosis of bovine tuberculosis. , 1995, American journal of veterinary research.

[18]  J. Rothel,et al.  In vitro immunodiagnostic assays for bovine tuberculosis. , 1994, Veterinary microbiology.

[19]  N. Barlow Bovine tuberculosis in New Zealand: epidemiology and models. , 1994, Trends in microbiology.

[20]  J. Haagsma,et al.  [An outbreak of bovine tuberculosis on a dairy farm]. , 1993, Tijdschrift voor diergeneeskunde.

[21]  S. Jones,et al.  Field comparison of the interferon-gamma assay and the intradermal tuberculin test for the diagnosis of bovine tuberculosis. , 1991, Australian veterinary journal.

[22]  S. Neill,et al.  A mathematical model for Mycobacterium bovis excretion from tuberculous cattle. , 1991, Veterinary microbiology.

[23]  L. Melville,et al.  Efficiency of inspection procedures for the detection of tuberculous lesions in cattle. , 1990, Australian veterinary journal.

[24]  A. Velthuis The effect of regulations on the contact structure of the Dutch cattle sector , 2004 .

[25]  M. V. Asseldonk,et al.  Modelstudie surveillance rundertuberculose : epidemiologische en economische evaluatie van detectiemethoden , 2003 .

[26]  Sebastiaan A.L.M. Kooijman,et al.  Individual Based Population Modelling , 1994 .

[27]  H. H. Kleeberg,et al.  The tuberculin test in cattle. , 1960 .