Experimental Determination of Intermetallic Phases, Phase Equilibria, and Invariant Reaction Temperatures in the Fe–Zr System

The phase diagram of the binary Fe-Zr system was redetermined by differential thermal analysis (DTA), electron-probe microanalysis (EPMA), x-ray diffraction (XRD), and metallography in the whole range of compositions. The stable intermetallic phases of the binary system are the cubic and the hexagonal polymorphs of the Fe2Zr Laves phase and the Zr-rich phases FeZr2 and FeZr3. While the cubic polymorph of the Laves phase is the stable structure at the stoichiometric Fe2Zr composition, the hexagonal C36-type polymorph of the Laves phase is a high-temperature phase that is found at Zr concentrations as low as 26.6 at.%. The Zr-rich phases FeZr2 and FeZr3 have small homogeneity ranges of about 0.5 at.%. FeZr2 is a high-temperature phase, stable between 780 and 951 °C. FeZr3 decomposes peritectoidally at 851 °C. The frequently reported phase Fe23Zr6 (Fe3Zr) is found not to be an equilibrium phase of the binary system.

[1]  H. Wallbaum Die Systeme der Eisenmetalle mit Titan, Zirkon, Niob und Tantal , 1941 .

[2]  H. Wallbaum Ergebnisse der röntgenographischen Strukturuntersuchung von Legierungen der Zusammensetzung AB2 der Eisenmetalle mit Titan, Zirkon, Niob und Tantal (1). , 1941 .

[3]  L. Tanner,et al.  OBSERVATIONS ON THE SYSTEM ZIRCONIUM IRON , 1959 .

[4]  V. N. Svechnikov,et al.  THE IRON-ZIRCONIUM PHASE DIAGRAM , 1962 .

[5]  R. Skolozdra,et al.  X-RAY STRUCTURAL ANALYSIS OF SOME Zr-Fe AND Zr-CO ALLOYS , 1966 .

[6]  W. Brückner,et al.  Atomie Arrangement in the Homogeneity Range of the Laves Phases ZrFe2 and TiFe2 , 1967 .

[7]  W. Brückner,et al.  Magnetic Properties of ZrFe2 and TiFe2 within Their Homogeneity Range , 1968 .

[8]  Mikio Yamamoto,et al.  CRYSTAL STRUCTURES AND MAGNETIC PROPERTIES OF THE INTERMETALLIC COMPOUND Fe$sub 2$Zr. , 1968 .

[9]  W. Fischer,et al.  Untersuchung der α/γ-Umwandlung in hochreinen Zweistofflegierungen des Eisens mit Molybdän, Vanadin, Wolfram, Niob, Tantal, Zirkon und Kobalt , 1970 .

[10]  E. E. Havinga,et al.  Compounds and pseudo-binary alloys with the CuAl2(C16)-type structure I. Preparation and X-ray results , 1972 .

[11]  S. Amelinckx,et al.  Electron microscopic studies of the laves phases TiCr2 and TiCo2 , 1972 .

[12]  H. Boller Über den aufgefüllten Re3B-Typ in den Systemen (Zr, Hf)−(Fe, Co, Ni)−O , 1973 .

[13]  R. J. Meyer,et al.  Gmelin handbook of inorganic chemistry , 1975 .

[14]  K. Buschow,et al.  Hydrogen absorption in various zirconium- and hafnium-based intermetallic compounds , 1979 .

[15]  T. Malakhova,et al.  The Zr-Fe phase diagram in the range 20–40 at.% Fe and the crystalline structure of the intermetallic compound Zr3Fe , 1981 .

[16]  P. Lucuta,et al.  Microstructural features of hot pressure bonding between stainless steel type AISI-304 L and Zircaloy-2 , 1981 .

[17]  K. Buschow Thermal stability and magnetic properties of amorphous Zr1−xFex alloys , 1981 .

[18]  J. Grange,et al.  Nature des precipites dans le zirconium de qualité nucléaire obtenu par le procédé kroll , 1982 .

[19]  Ortrud Kubaschewski,et al.  Iron-binary phase diagrams , 1982 .

[20]  S. Campbell,et al.  Hydrogen in Zr-Fe alloys: A Mössbauer effect study , 1984 .

[21]  P. Chaudouet,et al.  Existence d'une phase G dans le ternaire Fe−Zr−Si , 1984 .

[22]  L. Rosai,et al.  The properties of some zirconium-based gettering alloys for hydrogen isotope storage and purification☆ , 1984 .

[23]  M. Matsuura Surface-induced crystallisation of melt-spun amorphous Fe-rich Fe-Zr alloys , 1985 .

[24]  M. Venkatraman,et al.  The Cr−Nb (Chromium-Niobium) system , 1986 .

[25]  D. Northwood,et al.  Storing Hydrogen in AB2 Laves-Type Compounds* , 1986 .

[26]  K. Buschow,et al.  The 57Fe Mössbauer isomer shift in intermetallic compounds of iron , 1986 .

[27]  D. Arias,et al.  The Fe−Zr (Iron-Zirconium) system , 1988 .

[28]  S. K. Khera,et al.  Reaction diffusion in the zirconium-iron system , 1991 .

[29]  J. Devletian,et al.  Precise determination of isomorphous and eutectoid transformation temperatures in binary and ternary Zr alloys , 1991 .

[30]  S. Allen,et al.  Room-temperature deformation and stress-induced phase transformation of laves phases in Fe-10 At. Pct Zr alloy , 1992 .

[31]  S. Allen,et al.  Deformation Mechanisms in a Laves Phase , 1992 .

[32]  Roman Gladyshevskii,et al.  TYPIX Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types , 1993 .

[33]  R. Lück,et al.  Heat capacity of the Fe2Zr intermetallic compound , 1993 .

[34]  A. Pelton,et al.  Thermodynamic analysis of phase equilibria in the iron—zirconium system , 1993 .

[35]  K. Bhanumurthy,et al.  Modification of zirconium-iron phase diagram , 1993 .

[36]  Katherine C. Chen,et al.  Stoichiometry and Alloying Effects on the Phase Stability and Mechanical Properties of TiCr 2 -Base Laves Phase Alloys , 1994 .

[37]  B. Bewlay,et al.  Microstructural and crystallographic relationships in directionally solidified NbCr2Nb and CrCr2Nb eutectics , 1994 .

[38]  R. J. Schultz,et al.  The solid solubility of Fe in α-Zr: A secondary ion mass spectrometry study , 1994 .

[39]  D. Miracle,et al.  Microstructural evolution and mechanical properties of a CrCr2Hf alloy , 1994 .

[40]  K. Brooks,et al.  Deuterium absorption and material phase characteristics of Zr2Fe , 1994 .

[41]  W. Shmayda,et al.  Design of a second generation secondary enclosure clean-up system , 1995 .

[42]  Ibrahim Ansara,et al.  Experimental and thermodynamic assessment of the FeZr system , 1995 .

[43]  S. Allen,et al.  Deformation of two C36 laves phases by microhardness indentation at room temperature , 1995 .

[44]  S. Allen,et al.  An investigation of Fe3Zr phase , 1995 .

[45]  M. V. Lototsky,et al.  Oxide-modified ZrFe alloys: thermodynamic calculations, X-ray analysis and hydrogen absorption properties , 1995 .

[46]  J. Gachon,et al.  Investigation of the iron-rich corner of the Fe-Hf-Zr system , 1996 .

[47]  D. Abraham,et al.  Microstructure and phase identification in type 304 stainless steel-zirconium alloys , 1996 .

[48]  L. Kiss,et al.  Magnetic properties of FeZr metastable phases , 1996 .

[49]  D. Arias,et al.  Intermetallic phases in the iron-rich region of the ZrFe phase diagram , 1996 .

[50]  G. Sauthoff,et al.  Deformation behaviour of Al-containing C14 Laves phase alloys , 1996 .

[51]  D. D. Keiser,et al.  Interdiffusion behavior in UPuZr fuel versus stainless steel couples , 1996 .

[52]  S. M. McDeavitt,et al.  Stainless steel-zirconium waste forms from the treatment of spent nuclear fuel , 1997 .

[53]  K. Tokunaga,et al.  Recovery of low-concentration hydrogen from different gas streams with Zr2Fe particle beds , 1997 .

[54]  D. Abraham,et al.  Laves intermetallics in stainless steel–zirconium alloys , 1997 .

[55]  D. Abraham,et al.  Formation of the Fe23Zr6 phase in an Fe-Zr alloy , 1997 .

[56]  Daniel P. Abraham,et al.  Evaluation of stainless steel–zirconium alloys as high-level nuclear waste forms , 1998 .

[57]  P. Wollants,et al.  Thermodynamic optimisation of the Co–Nb system , 1998 .

[58]  V. Yartys,et al.  Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice. I. Crystal structure of Zr2FeD5 , 1998 .

[59]  H. Fjellvåg,et al.  Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice. II. Orthorhombic Zr3FeD6.7 with filled Re3B-type structure , 1998 .

[60]  H. Fjellvåg,et al.  Neutron diffraction studies of Zr-containing intermetallic hydrides with ordered hydrogen sublattice,: III. Orthorhombic Zr3FeDx (x=1.3, 2.5 and 5.0) with partially filled Re3B-type structure , 1999 .

[61]  R. Ramanujan,et al.  ACTIVE EUTECTOID DECOMPOSITION IN Zr-3 wt.% Fe , 1999 .

[62]  D. Abraham,et al.  Influence of technetium on the microstructure of a stainless steel-zirconium alloy , 2000 .

[63]  G. Sauthoff Multiphase intermetallic alloys for structural applications , 2000 .

[64]  E. Kenik,et al.  Structural stability of the Laves phase Cr2Ta in a two-phase Cr-Cr2Ta alloy , 2000 .

[65]  H. Okamoto Co-Nb (Cobalt-Niobium) , 2000 .

[66]  M. Nishikawa,et al.  Zr2Fe and Zr(Mn0.5Fe0.5)2 particle beds for tritium purification and impurity removal in a fusion fuel cycle , 2000 .

[67]  E. Sheftel,et al.  Changes of chemical composition and structure of soft magnetic nanocrystalline Fe–Zr–N alloy under vacuum annealing , 2000 .

[68]  K. Ishida,et al.  Thermodynamic Calculations of Fe-Zr and Fe-Zr-C Systems , 2001 .

[69]  Daniel P. Abraham,et al.  Role of laves intermetallics in nuclear waste disposal 1 1 This paper has been created by the University of Chicago as Operator of Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the US Department of Energy. , 2002 .

[70]  H. Okamoto Cr-Ti (chromium-titanium) , 2002 .