Approximations of a Ginzburg-Landau model for superconducting hollow spheres based on spherical centroidal Voronoi tessellations

In this paper the numerical approximations of the Ginzburg-Landau model for a superconducting hollow spheres are constructed using a gauge invariant discretization on spherical centroidal Voronoi tessellations. A reduced model equation is used on the surface of the sphere which is valid in the thin spherical shell limit. We present the numerical algorithms and their theoretical convergence as well as interesting numerical results on the vortex configurations. Properties of the spherical centroidal Voronoi tessellations are also utilized to provide a high resolution scheme for computing the supercurrent and the induced magnetic field.

[1]  Zhiming Chen,et al.  Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity , 2000, SIAM J. Numer. Anal..

[2]  Emmanuel Hebey,et al.  Sobolev Spaces on Riemannian Manifolds , 1996 .

[3]  Qiang Du,et al.  The bifurcation diagrams for the Ginzburg–Landau system of superconductivity , 2001 .

[4]  J. T. Devreese,et al.  Superconducting mesoscopic square loop , 1998 .

[5]  Qiang Du,et al.  Numerical simulations of the quantized vortices on a thin superconducting hollow sphere , 2004 .

[6]  Qiang Du,et al.  Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..

[7]  Qiang Du,et al.  Analysis and Convergence of a Covolume Approximation of the Ginzburg--Landau Model of Superconductivity , 1998 .

[8]  Qiang Du,et al.  Critical Magnetic Field and Asymptotic Behavior of Superconducting Thin Films , 2002, SIAM J. Math. Anal..

[9]  Zhi-Xiong Cai,et al.  Angle dependence of magnetization in a single-domain YBa{sub 2}Cu{sub 3}O{sub x} sphere , 1998 .

[10]  Peterson,et al.  Computational simulation of type-II superconductivity including pinning phenomena. , 1995, Physical review. B, Condensed matter.

[11]  F. M. Peeters,et al.  Saddle-point states and energy barriers for vortex entrance and exit in superconducting disks and rings , 2001 .

[12]  B. Iannotta MUSIC OF THE SPHERES , 1996 .

[13]  Philip W. Anderson,et al.  Formation of High Temperature Superconducting Balls , 1999 .

[14]  M. A. Moore,et al.  Vortices in a thin-film superconductor with a spherical geometry , 1997 .

[15]  Qiang Du,et al.  Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..

[16]  Tsvi Piran,et al.  Relaxation Methods for Gauge Field Equilibrium Equations , 1984 .

[17]  M. Gunzburger,et al.  Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere ☆ , 2003 .

[18]  S. Jonathan Chapman,et al.  The Motion of Superconducting Vortices in Thin Films of Varying Thickness , 1998, SIAM J. Appl. Math..

[19]  Qiang Du,et al.  Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity , 1998, Math. Comput..

[20]  J. Rubinstein,et al.  PHASE TRANSITION CURVES FOR MESOSCOPIC SUPERCONDUCTING SAMPLES , 1999 .

[21]  Robert J. Renka,et al.  Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.

[22]  Elijah Polak,et al.  Computational methods in optimization , 1971 .

[23]  Saps Buchman,et al.  Magnetic flux distribution on a spherical superconducting shell , 1994 .

[24]  Mark W. Coffey London model for the levitation force between a horizontally oriented point magnetic dipole and superconducting sphere , 2002 .

[25]  F. M. Peeters,et al.  Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998 .

[26]  M. A. Moore,et al.  Noninteger flux quanta for a spherical superconductor , 1998 .

[27]  Qiang Du,et al.  Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .

[28]  E. Polak,et al.  Computational methods in optimization : a unified approach , 1972 .

[29]  William Gropp,et al.  Numerical Simulation of Vortex Dynamics in Type-II Superconductors , 1996 .

[30]  F. M. Peeters,et al.  Dependence of the vortex configuration on the geometry of mesoscopic flat samples , 2002 .

[31]  E Weinan,et al.  Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .

[32]  B Cipra,et al.  Music of the Spheres , 2021, Women's Studies.