Approximations of a Ginzburg-Landau model for superconducting hollow spheres based on spherical centroidal Voronoi tessellations
暂无分享,去创建一个
[1] Zhiming Chen,et al. Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity , 2000, SIAM J. Numer. Anal..
[2] Emmanuel Hebey,et al. Sobolev Spaces on Riemannian Manifolds , 1996 .
[3] Qiang Du,et al. The bifurcation diagrams for the Ginzburg–Landau system of superconductivity , 2001 .
[4] J. T. Devreese,et al. Superconducting mesoscopic square loop , 1998 .
[5] Qiang Du,et al. Numerical simulations of the quantized vortices on a thin superconducting hollow sphere , 2004 .
[6] Qiang Du,et al. Analysis and Approximation of the Ginzburg-Landau Model of Superconductivity , 1992, SIAM Rev..
[7] Qiang Du,et al. Analysis and Convergence of a Covolume Approximation of the Ginzburg--Landau Model of Superconductivity , 1998 .
[8] Qiang Du,et al. Critical Magnetic Field and Asymptotic Behavior of Superconducting Thin Films , 2002, SIAM J. Math. Anal..
[9] Zhi-Xiong Cai,et al. Angle dependence of magnetization in a single-domain YBa{sub 2}Cu{sub 3}O{sub x} sphere , 1998 .
[10] Peterson,et al. Computational simulation of type-II superconductivity including pinning phenomena. , 1995, Physical review. B, Condensed matter.
[11] F. M. Peeters,et al. Saddle-point states and energy barriers for vortex entrance and exit in superconducting disks and rings , 2001 .
[12] B. Iannotta. MUSIC OF THE SPHERES , 1996 .
[13] Philip W. Anderson,et al. Formation of High Temperature Superconducting Balls , 1999 .
[14] M. A. Moore,et al. Vortices in a thin-film superconductor with a spherical geometry , 1997 .
[15] Qiang Du,et al. Constrained Centroidal Voronoi Tessellations for Surfaces , 2002, SIAM J. Sci. Comput..
[16] Tsvi Piran,et al. Relaxation Methods for Gauge Field Equilibrium Equations , 1984 .
[17] M. Gunzburger,et al. Voronoi-based finite volume methods, optimal Voronoi meshes, and PDEs on the sphere ☆ , 2003 .
[18] S. Jonathan Chapman,et al. The Motion of Superconducting Vortices in Thin Films of Varying Thickness , 1998, SIAM J. Appl. Math..
[19] Qiang Du,et al. Discrete gauge invariant approximations of a time dependent Ginzburg-Landau model of superconductivity , 1998, Math. Comput..
[20] J. Rubinstein,et al. PHASE TRANSITION CURVES FOR MESOSCOPIC SUPERCONDUCTING SAMPLES , 1999 .
[21] Robert J. Renka,et al. Algorithm 772: STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere , 1997, TOMS.
[22] Elijah Polak,et al. Computational methods in optimization , 1971 .
[23] Saps Buchman,et al. Magnetic flux distribution on a spherical superconducting shell , 1994 .
[24] Mark W. Coffey. London model for the levitation force between a horizontally oriented point magnetic dipole and superconducting sphere , 2002 .
[25] F. M. Peeters,et al. Vortex Phase Diagram for Mesoscopic Superconducting Disks , 1998 .
[26] M. A. Moore,et al. Noninteger flux quanta for a spherical superconductor , 1998 .
[27] Qiang Du,et al. Ginzburg-Landau vortices: dynamics, pinning, and hysteresis , 1997 .
[28] E. Polak,et al. Computational methods in optimization : a unified approach , 1972 .
[29] William Gropp,et al. Numerical Simulation of Vortex Dynamics in Type-II Superconductors , 1996 .
[30] F. M. Peeters,et al. Dependence of the vortex configuration on the geometry of mesoscopic flat samples , 2002 .
[31] E Weinan,et al. Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity , 1994 .
[32] B Cipra,et al. Music of the Spheres , 2021, Women's Studies.