Analysis and Efficient Implementations of a Class of Composited de Bruijn Sequences

A binary de Bruijn sequence is a sequence of period <inline-formula><tex-math notation="LaTeX">$2^n$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq1-2979460.gif"/></alternatives></inline-formula> in which every binary <inline-formula><tex-math notation="LaTeX">$n$</tex-math><alternatives><mml:math><mml:mi>n</mml:mi></mml:math><inline-graphic xlink:href="mandal-ieq2-2979460.gif"/></alternatives></inline-formula>-tuple occurs exactly once in each period. A de Bruijn sequence has good randomness properties, such as long period, ideal tuple distribution, and high linear complexity, and can be generated by a nonlinear feedback shift register (NLFSR). Finding an efficient NLFSR that can generate a de Bruijn sequence with a long period is a significant challenge. “Composited construction” is a technique for constructing a de Bruijn sequence of period <inline-formula><tex-math notation="LaTeX">$2^{n+k}$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mrow><mml:mi>n</mml:mi><mml:mo>+</mml:mo><mml:mi>k</mml:mi></mml:mrow></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq3-2979460.gif"/></alternatives></inline-formula> by an NLFSR from a de Bruijn sequence of period <inline-formula><tex-math notation="LaTeX">$2^n$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mi>n</mml:mi></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq4-2979460.gif"/></alternatives></inline-formula> through a composition operation repeatedly applying <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="mandal-ieq5-2979460.gif"/></alternatives></inline-formula> times. The goal of this article is to further investigate the composited construction of de Bruijn sequences with efficient hardware implementations, and determine randomness properties such as linear complexity. Our contributions in this article are as follows. First, we present a generalized construction of composited de Bruijn sequences that is constructed by adding a combination of conjugate pairs of different lengths in the feedback function of the composited construction, which results in generating a class of de Bruijn sequences of size <inline-formula><tex-math notation="LaTeX">$2^k$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mi>k</mml:mi></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq6-2979460.gif"/></alternatives></inline-formula>, whereas the original composited construction can generate only two sequences. Second, we investigate the linear complexity and the correlation property of the new class of de Bruijn sequences. We prove theoretically that the linear complexity of this class of de Bruijn sequences is optimal or close to optimal. Interestingly, we also prove that the linear complexities of all the sequences of this class are equal, which strengthens Etzion's conjecture (JCTA 1985, IEEE-IT 1999) about the number of de Bruijn sequences with equal linear complexity. This is the first known construction of de Bruijn sequences of an arbitrarily long period whose linear complexities are determined theoretically. Finally, we implement our construction in hardware to demonstrate its practicality. We synthesize our implementations for a 65 nm ASIC and a Xilinx Spartan FPGA and present hardware areas, and performances of de Bruijn sequences of periods in the range of <inline-formula><tex-math notation="LaTeX">$2^{160}$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mn>160</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq7-2979460.gif"/></alternatives></inline-formula> to <inline-formula><tex-math notation="LaTeX">$2^{1056}$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mn>1056</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq8-2979460.gif"/></alternatives></inline-formula>. For instance, a class of de Bruijn sequences of period <inline-formula><tex-math notation="LaTeX">$2^{160}$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mn>160</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq9-2979460.gif"/></alternatives></inline-formula> (resp. <inline-formula><tex-math notation="LaTeX">$2^{288}$</tex-math><alternatives><mml:math><mml:msup><mml:mn>2</mml:mn><mml:mn>288</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="mandal-ieq10-2979460.gif"/></alternatives></inline-formula>) can be implemented with an area of 3.43 (resp. 6.71) kGEs in 65 nm ASIC, and 83 (resp. 229) slices in Spartan6 FPGA.

[1]  Johannes Mykkeltveit,et al.  On the Cycle Structure of Some Nonlinear Shift Register Sequences , 1979, Inf. Control..

[2]  de Ng Dick Bruijn A combinatorial problem , 1946 .

[3]  Huaxiong Wang,et al.  Construction of de Bruijn sequences from product of two irreducible polynomials , 2016, Cryptography and Communications.

[4]  Richard A. Games,et al.  On the Complexities of de Bruijn Sequences , 1982, J. Comb. Theory, Ser. A.

[5]  Jordi Herrera-Joancomartí,et al.  J3Gen: A PRNG for Low-Cost Passive RFID , 2013, Sensors.

[6]  Bo Yang,et al.  Efficient Composited de Bruijn Sequence Generators , 2017, IEEE Transactions on Computers.

[7]  Guang Gong,et al.  Design and Implementation of Warbler Family of Lightweight Pseudorandom Number Generators for Smart Devices , 2016, ACM Trans. Embed. Comput. Syst..

[8]  Richard A. Games,et al.  On the quadratic spans of DeBruijn sequences , 1990, IEEE Trans. Inf. Theory.

[9]  Tuvi Etzion,et al.  Construction of de Bruijn sequences of minimal complexity , 1984, IEEE Trans. Inf. Theory.

[10]  H. Fredricksen A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .

[11]  Guang Gong,et al.  Feedback Reconstruction and Implementations of Pseudorandom Number Generators from Composited De Bruijn Sequences , 2016, IEEE Transactions on Computers.

[12]  Abbas Alhakim,et al.  A recursive construction of nonbinary de Bruijn sequences , 2011, Des. Codes Cryptogr..

[13]  Dongdai Lin,et al.  The Adjacency Graphs of LFSRs With Primitive-Like Characteristic Polynomials , 2017, IEEE Transactions on Information Theory.

[14]  Elena Dubrova,et al.  A List of Maximum Period NLFSRs , 2012, IACR Cryptol. ePrint Arch..

[15]  Chunhua Su,et al.  Evaluation and Improvement of Pseudo-Random Number Generator for EPC Gen2 , 2017, 2017 IEEE Trustcom/BigDataSE/ICESS.

[16]  Richard A. Games,et al.  A fast algorithm for determining the complexity of a binary sequence with period 2n , 1983, IEEE Trans. Inf. Theory.

[17]  Dingyi Pei,et al.  Construction for de Bruijn sequences with large stage , 2017, Des. Codes Cryptogr..

[18]  Tor Helleseth,et al.  The Properties of a Class of Linear FSRs and Their Applications to the Construction of Nonlinear FSRs , 2014, IEEE Transactions on Information Theory.

[19]  Dongdai Lin,et al.  The adjacency graphs of some feedback shift registers , 2017, Des. Codes Cryptogr..

[20]  Tuvi Etzion On the Distribution of de Bruijn Sequences of Low Complexity , 1985, J. Comb. Theory, Ser. A.

[21]  Guang Gong,et al.  Signal Design for Good Correlation: For Wireless Communication, Cryptography, and Radar , 2005 .

[22]  Janusz Szmidt,et al.  Generation of nonlinear feedback shift registers with special-purpose hardware , 2012, 2012 Military Communications and Information Systems Conference (MCC).

[23]  Rainer Göttfert,et al.  An NLFSR-based stream cipher , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[24]  Solomon W. Golomb,et al.  Linear spans of modified de Bruijn sequences , 1990, IEEE Trans. Inf. Theory.

[25]  Bo Yang,et al.  On ideal t-tuple distribution of filtering de Bruijn sequence generators , 2018, Cryptography and Communications.

[26]  Christophe De Cannière,et al.  KATAN and KTANTAN - A Family of Small and Efficient Hardware-Oriented Block Ciphers , 2009, CHES.

[27]  G. Mayhew,et al.  Auto-correlation properties of modified de Bruijn sequences , 2000, IEEE 2000. Position Location and Navigation Symposium (Cat. No.00CH37062).

[28]  Gregory L. Mayhew,et al.  Weight class distributions of de Bruijn sequences , 1994, Discret. Math..

[29]  Johannes Mykkeltveit,et al.  On cross joining de Bruijn sequences , 2013, IACR Cryptol. ePrint Arch..

[30]  Guang Gong,et al.  Cryptographically Strong de Bruijn Sequences with Large Periods , 2012, Selected Areas in Cryptography.

[31]  Ennio Gambi,et al.  Binary De Bruijn sequences for DS-CDMA systems: analysis and results , 2011, EURASIP J. Wirel. Commun. Netw..

[32]  Dongdai Lin,et al.  De Bruijn Sequences, Adjacency Graphs, and Cyclotomy , 2018, IEEE Transactions on Information Theory.

[33]  Christophe De Cannière,et al.  Trivium: A Stream Cipher Construction Inspired by Block Cipher Design Principles , 2006, ISC.

[34]  Guang Gong,et al.  Generating Good Span n Sequences Using Orthogonal Functions in Nonlinear Feedback Shift Registers , 2014, Open Problems in Mathematics and Computational Science.

[35]  Ronald L. Rivest The MD 6 hash function A proposal to NIST for SHA-3 , 2008 .

[36]  Guang Gong Randomness and Representation of Span n Sequences , 2007, SSC.

[37]  Martin Hell,et al.  Grain: a stream cipher for constrained environments , 2007, Int. J. Wirel. Mob. Comput..

[38]  Tuvi Etzion,et al.  Linear Complexity of de Brujin Sequences - Old and New Results , 1999, IEEE Trans. Inf. Theory.

[39]  Tor Helleseth,et al.  Construction of de Bruijn Sequences From LFSRs With Reducible Characteristic Polynomials , 2016, IEEE Transactions on Information Theory.

[40]  Bo Yang,et al.  Optimizations and Hardware Implementations for Composited de Bruijn Sequence Generators , 2016 .