Testing a Quantum Computer

The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package generates test plans for arbitrary quantum circuits using the very efficient simulator QuIDDPro[1]. The quantum fault table is introduced and mathematically formalized, and the test generation method explained.

[1]  Marek Perkowski,et al.  Fault Localization in Reversible Circuits is Easier than for Classical Circuits , 2004 .

[2]  Tsutomu Sasao Easily Testable Realizations for Generalized Reed-Muller Expressions , 1997, IEEE Trans. Computers.

[3]  J. Ankerhold,et al.  Enhancement of macroscopic quantum tunneling by Landau-Zener transitions. , 2003, Physical review letters.

[4]  R. Landauer,et al.  Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..

[5]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[6]  Simon Litsyn,et al.  Quantum error detection II: Bounds , 1999, IEEE Trans. Inf. Theory.

[7]  Wojciech H. Zurek,et al.  Reversibility and stability of information processing systems , 1984 .

[8]  John P. Hayes,et al.  Improving Gate-Level Simulation of Quantum Circuits , 2003, Quantum Inf. Process..

[9]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[10]  R. Merkle Reversible electronic logic using switches , 1993 .

[11]  Jaehyun Kim,et al.  Implementing unitary operators in quantum computation , 2000 .

[12]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[13]  Charles H. Bennett,et al.  Logical reversibility of computation , 1973 .

[14]  Colin P. Williams,et al.  Explorations in quantum computing , 1997 .

[15]  Stefano Bettelli Quantitative model for the effective decoherence of a quantum computer with imperfect unitary operations , 2004 .

[16]  A. J. Scott Probabilities of Failure for Quantum Error Correction , 2005, Quantum Inf. Process..

[17]  Subhash Kak The Initialization Problem in Quantum Computing , 1998 .

[18]  Simon Litsyn,et al.  Quantum error detection I: Statement of the problem , 1999, IEEE Trans. Inf. Theory.

[19]  T. Toffoli,et al.  Conservative logic , 2002, Collision-Based Computing.

[20]  Hans-Joachim Wunderlich,et al.  The pseudoexhaustive test of sequential circuits , 1989, Proceedings. 'Meeting the Tests of Time'., International Test Conference.

[21]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[22]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[23]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[24]  Edward J. McCluskey,et al.  Stuck-fault tests vs. actual defects , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[25]  Ralph C. Merkle,et al.  Two types of mechanical reversible logic , 1993 .

[26]  I. Chuang,et al.  Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance , 2001, Nature.

[27]  Joan Figueras,et al.  Digital Signature Proposal for Mixed-Signal Circuits , 2001, J. Electron. Test..