Trinity flame retardant with benzimidazole structure towards unsaturated polyester possessing high thermal stability, fire-safety and smoke suppression with in-depth insight into the smoke suppression mechanism

[1]  Shenmin Zhang,et al.  Design and synthesis of liquid crystal copolyesters with high-frequency low dielectric loss and inherent flame retardancy , 2022, Chinese Chemical Letters.

[2]  Li Chen,et al.  Facile fabrication of intrinsically fire-safety epoxy resin cured with phosphorus-containing transition metal complexes for flame retardation, smoke suppression, and latent curing behavior , 2022, Chemical Engineering Journal.

[3]  S. Huo,et al.  A hyperbranched P/N/B-containing oligomer as multifunctional flame retardant for epoxy resins , 2022, Composites Part B: Engineering.

[4]  Hai-Bo Zhao,et al.  Advanced Flame‐Retardant Methods for Polymeric Materials , 2021, Advanced materials.

[5]  M. Doğan,et al.  Flame retardant effect of boron compounds in polymeric materials , 2021 .

[6]  S. Bourbigot,et al.  Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities , 2021, Chemical Engineering Journal.

[7]  Rong‐Kun Jian,et al.  A strategy to construct multifunctional ammonium polyphosphate for epoxy resin with simultaneously high fire safety and mechanical properties , 2021 .

[8]  Lei Song,et al.  Polyphosphazenes-based flame retardants: A review , 2020 .

[9]  Xiu-li Wang,et al.  Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. , 2020, Journal of hazardous materials.

[10]  Xiu-li Wang,et al.  3D printable robust shape memory PET copolyesters with fire safety via π-stacking and synergistic crosslinking , 2019, Journal of Materials Chemistry A.

[11]  Xuecheng Chen,et al.  Recent progress in controlled carbonization of (waste) polymers , 2019, Progress in Polymer Science.

[12]  Yu-Zhong Wang,et al.  Fire-Safe Polyesters Enabled by End-Group Capturing Chemistry. , 2019, Angewandte Chemie.

[13]  R. Nazir,et al.  Recent developments in P(O/S)–N containing flame retardants , 2019, Journal of Applied Polymer Science.

[14]  Zhengping Fang,et al.  Synergistic flame retardant mechanism of lanthanum phenylphosphonate and decabromodiphenyl oxide in polycarbonate , 2019 .

[15]  R. Sonnier,et al.  New Insights into the Investigation of Smoke Production Using a Cone Calorimeter , 2019, Fire Technology.

[16]  M. Head‐Gordon,et al.  Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth , 2018, Science.

[17]  M. Thomson,et al.  A radical approach to soot formation , 2018, Science.

[18]  Xiu-li Wang,et al.  Highly thermostable and durably flame-retardant unsaturated polyester modified by a novel polymeric flame retardant containing Schiff base and spirocyclic structures , 2018, Chemical Engineering Journal.

[19]  Bernhard Schartel,et al.  Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy , 2018, Angewandte Chemie.

[20]  Liping Zhao,et al.  The flame retardant and smoke suppression effect of fullerene by trapping radicals in decabromodiphenyl oxide/Sb2O3 flame‐retarded high density polyethylene , 2017 .

[21]  J. Akroyd,et al.  Modelling PAH curvature in laminar premixed flames using a detailed population balance model , 2017 .

[22]  Pezhman Arab,et al.  A cost-effective synthesis of heteroatom-doped porous carbons as efficient CO2 sorbents , 2016 .

[23]  M. F. Campbell,et al.  Formation and emission of large furans and oxygenated hydrocarbons from flames , 2016, Proceedings of the National Academy of Sciences.

[24]  Joseph L. Lenhart,et al.  DMA testing of epoxy resins: The importance of dimensions , 2015 .

[25]  Yu-Zhong Wang,et al.  Novel Multifunctional Organic-Inorganic Hybrid Curing Agent with High Flame-Retardant Efficiency for Epoxy Resin. , 2015, ACS applied materials & interfaces.

[26]  Qinghua Zhang,et al.  Synthesis, characterization and properties of aromatic copolyimides containing Bi-benzimidazole moiety , 2015, Journal of Polymer Research.

[27]  Ali K. Sekizkardes,et al.  Exceptional Gas Adsorption Properties by Nitrogen-Doped Porous Carbons Derived from Benzimidazole-Linked Polymers , 2015 .

[28]  E. Therssen,et al.  Laser induced fluorescence spectroscopy of aromatic species produced in atmospheric sooting flames using UV and visible excitation wavelengths , 2014 .

[29]  Zhao‐Yang Wang,et al.  Synthesis and characterization of a novel flame retardant, poly(lactic acid-co-3,3′-diaminobenzidine) , 2013 .

[30]  M. Kraft,et al.  A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. , 2012, Physical chemistry chemical physics : PCCP.

[31]  Vytenis Babrauskas,et al.  Hazards of combustion products: Toxicity, opacity, corrosivity, and heat release: The experts' views on capability and issues , 2011 .

[32]  C. McEnally,et al.  Sooting tendencies of oxygenated hydrocarbons in laboratory-scale flames. , 2011, Environmental science & technology.

[33]  Lei Song,et al.  Combustion and Thermal Degradation Mechanism of a Novel Intumescent Flame Retardant for Epoxy Acrylate Containing Phosphorus and Nitrogen , 2011 .

[34]  E. Kandare,et al.  Study of the thermal decomposition of flame-retarded unsaturated polyester resins by thermogravimetric analysis and Py-GC/MS , 2008 .

[35]  J. H. Miller,et al.  Intermolecular potential calculations for polynuclear aromatic hydrocarbon clusters. , 2008, The journal of physical chemistry. A.

[36]  Bernhard Schartel,et al.  Development of fire‐retarded materials—Interpretation of cone calorimeter data , 2007 .

[37]  C. McEnally,et al.  Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways , 2007 .

[38]  A. I. Balabanovich,et al.  Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites , 2006 .

[39]  Reinhard Niessner,et al.  Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information , 2005 .

[40]  R. Jeng,et al.  Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy , 2004 .

[41]  D. Kittelson,et al.  Kinetics and visualization of soot oxidation using transmission electron microscopy , 2004 .

[42]  Jean-Louis Delfau,et al.  Investigating the role of methane on the growth of aromatic hydrocarbons and soot in fundamental combustion processes , 2003 .

[43]  Michael Frenklach,et al.  Particle aggregation with simultaneous surface growth. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  Michael Frenklach,et al.  Reaction mechanism of soot formation in flames , 2002 .

[45]  Jack B. Howard,et al.  Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways , 2000 .

[46]  Tiago L. Farias,et al.  Fractal and projected structure properties of soot aggregates , 1995 .

[47]  M. Frenklach,et al.  Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals , 1994 .

[48]  Vytenis Babrauskas,et al.  Fire conditions for smoke toxicity measurement , 1994 .

[49]  Constantine M. Megaridis,et al.  Morphological Description of Flame-Generated Materials , 1990 .

[50]  J. H. Miller,et al.  Chemistry of Molecular Growth Processes in Flames , 1987, Science.

[51]  A. Violi,et al.  Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains , 2013 .

[52]  Michael Frenklach,et al.  Monte-Carlo simulation of soot particle coagulation and aggregation: the effect of a realistic size distribution , 2005 .

[53]  A. M. Weiner,et al.  CHEMICAL KINETICS OF SOOT PARTICLE GROWTH , 1985 .