Lamellar K2Co3(P2O7)2·2H2O nanocrystal whiskers: High-performance flexible all-solid-state asymmetric micro-supercapacitors via inkjet printing

Abstract A flexible all-solid-state asymmetric micro-supercapacitor based on lamellar (K 2 Co 3 (P 2 O 7 ) 2 ·2H 2 O) nanocrystal whiskers and graphene nanosheets was successfully fabricated by inkjet printing in a simple and cost-effective way. A facile method to synthesize lamellar K 2 Co 3 (P 2 O 7 ) 2 ·2H 2 O nanocrystal whiskers under a mild hydrothermal condition was also established. The assembled micro-device exhibited a high specific capacitance (6.0 F cm −3 ), good rate/mechanical stability and a long cycling stability (5000 cycles) with a maximun energy density of 0.96 mW h cm −3 , demonstrating great promise for applications in flexible all-solid-state micro-supercapacitors.

[1]  Xu Xiao,et al.  Freestanding Mesoporous VN/CNT Hybrid Electrodes for Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.

[2]  Xiaogang Zhang,et al.  Facile synthesis of Co2P2O7 nanorods as a promising pseudocapacitive material towards high-performance electrochemical capacitors , 2013 .

[3]  Po-Chiang Chen,et al.  Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates , 2010 .

[4]  M. Schwab,et al.  Screen‐Printable Thin Film Supercapacitor Device Utilizing Graphene/Polyaniline Inks , 2013 .

[5]  Jun Jiang,et al.  Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. , 2013, Chemical Society reviews.

[6]  X. Lou,et al.  Mixed transition-metal oxides: design, synthesis, and energy-related applications. , 2014, Angewandte Chemie.

[7]  A. Chiolerio,et al.  Inkjet Printed Negative Supercapacitors: Synthesis of Polyaniline‐Based Inks, Doping Agent Effect, and Advanced Electronic Devices Applications , 2014 .

[8]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[9]  J. Chen,et al.  Facile fabrication of NH4CoPO4·H2O nano/microstructures and their primarily application as electrochemical supercapacitor. , 2012, Nanoscale.

[10]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[11]  X. Zhao,et al.  Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes , 2012 .

[12]  Teng Zhai,et al.  High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. , 2013, Nano letters.

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Akihiko Hirata,et al.  Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. , 2011, Nature nanotechnology.

[15]  H. Jung,et al.  Synthesis of Cu2PO4OH Hierarchical Superstructures with Photocatalytic Activity in Visible Light , 2008 .

[16]  Klaus Müllen,et al.  Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. , 2012, Journal of the American Chemical Society.

[17]  Zhongjie Huang,et al.  Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors , 2010 .

[18]  Yong Ding,et al.  Hydrogenated ZnO core-shell nanocables for flexible supercapacitors and self-powered systems. , 2013, ACS nano.

[19]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[20]  Chen Chen,et al.  Twisting Carbon Nanotube Fibers for Both Wire‐Shaped Micro‐Supercapacitor and Micro‐Battery , 2013, Advanced materials.

[21]  M. El‐Kady,et al.  Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors , 2012, Science.

[22]  Hong Lin,et al.  Amorphous cobalt potassium phosphate microclusters as efficient photoelectrochemical water oxidation catalyst , 2013 .

[23]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[24]  Yi Xie,et al.  Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. , 2013, Nano letters.

[25]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[26]  Yongyao Xia,et al.  Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15 , 2006 .

[27]  Changwen Hu,et al.  Hierarchical Three-Dimensional Cobalt Phosphate Microarchitectures : Large-Scale Solvothermal Synthesis, Characterization, and Magnetic and Microwave Absorption Properties , 2008 .

[28]  Hua Zhang,et al.  Preparation of novel 3D graphene networks for supercapacitor applications. , 2011, Small.

[29]  J. Xu,et al.  Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. , 2013, ACS nano.

[30]  Bin Liu,et al.  NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors , 2013 .

[31]  H. Pang,et al.  Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor , 2013, Journal of Solid State Electrochemistry.

[32]  M. Schwab,et al.  Inkjet-printed energy storage device using graphene/polyaniline inks , 2014 .

[33]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[34]  Teng Zhai,et al.  H‐TiO2@MnO2//H‐TiO2@C Core–Shell Nanowires for High Performance and Flexible Asymmetric Supercapacitors , 2013, Advanced materials.

[35]  Teng Zhai,et al.  Stabilized TiN nanowire arrays for high-performance and flexible supercapacitors. , 2012, Nano letters.

[36]  J. Chen,et al.  Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. , 2013, Nanoscale.

[37]  Craig E. Banks,et al.  Printable thin film supercapacitors utilizing single crystal cobalt hydroxidenanosheets , 2012 .

[38]  Zhong Lin Wang,et al.  Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. , 2012, Nano letters.

[39]  Jianqiang Wang,et al.  Flexible and Wire‐Shaped Micro‐Supercapacitor Based on Ni(OH)2‐Nanowire and Ordered Mesoporous Carbon Electrodes , 2014 .

[40]  Kaibing Xu,et al.  MnO2 Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors , 2014 .

[41]  Yanwu Zhu,et al.  Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. , 2012, Nano letters.

[42]  C. Zhi,et al.  Ultrathin nanoporous Fe3O4–carbon nanosheets with enhanced supercapacitor performance , 2013 .

[43]  Fei Xiao,et al.  Flexible all-solid-state asymmetric supercapacitors based on free-standing carbon nanotube/graphene and Mn3O4 nanoparticle/graphene paper electrodes. , 2012, ACS applied materials & interfaces.

[44]  Yadong Li,et al.  Transition-metal phosphate colloidal spheres. , 2009, Angewandte Chemie.

[45]  Dianzeng Jia,et al.  Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances , 2012 .

[46]  H. Pang,et al.  NH4CoPO4·H2O microbundles consisting of one-dimensional layered microrods for high performance supercapacitors , 2014 .

[47]  Wang Zilong,et al.  High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide , 2014 .

[48]  Yunlong Zhao,et al.  Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance , 2013, Nature Communications.

[49]  Bin Liu,et al.  Fiber-based flexible all-solid-state asymmetric supercapacitors for integrated photodetecting system. , 2014, Angewandte Chemie.

[50]  J. Chen,et al.  Few-layered CoHPO4 · 3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. , 2013, Nanoscale.

[51]  B. Liu,et al.  Three‐Dimensional Hierarchical GeSe2 Nanostructures for High Performance Flexible All‐Solid‐State Supercapacitors , 2013, Advanced materials.