Monogamous nature of Dicke-class of states with two distinct Majorana spinors

We have examined the monogamous nature of the Dicke-class of states, the $N$-qubit pure symmetric states with two distinct spinors. The Majorana representation of all SLOCC inequivalent families of states belonging to Dicke-class is made use of, to evaluate the concurrence tangle and negativity tangle. In each SLOCC family, the Dicke states--characterized by two orthogonal spinors, are found to have larger tangle compared to their companion states with two non-orthogonal spinors belonging to the same family. For any fixed N, it is shown that the states with equal distribution of the two spinors have larger tangle when compared to other inequivalent classes with different degeneracy configurations. This is quite in conformity with the fact that the pairwise entanglement of symmetric multiqubit states with two distinct spinors is maximum when there is equal distribution of two spinors.

[1]  Connor Paul-Paddock,et al.  Anticoherent Subspaces , 2016, 1610.05841.

[2]  Sudha,et al.  Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle , 2014, 1410.7925.

[3]  Sudha,et al.  Spin squeezing in symmetric multiqubit states with two non-orthogonal Majorana spinors , 2018, Quantum Information Processing.

[4]  S. Fei,et al.  ENTANGLEMENT PROPERTY AND MONOGAMY RELATION OF GENERALIZED MIXED W STATES , 2010, 1012.3823.

[5]  Jun Li,et al.  Tighter monogamy relations in multiqubit systems , 2018, 1803.11355.

[6]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[7]  Zhenghan Wang,et al.  Exploring multipartite quantum correlations with the square of quantum discord , 2012, 1206.2096.

[8]  Thiago R. de Oliveira Monogamy inequality and residual entanglement of three qubits under decoherence , 2009 .

[9]  Barbara M. Terhal Is entanglement monogamous? , 2004, IBM J. Res. Dev..

[10]  Hideharu Mikami,et al.  Generation of the four-photon W state and other multiphoton entangled states using parametric down-conversion , 2004 .

[11]  L. Lamata,et al.  Operational families of entanglement classes for symmetric N-qubit States. , 2009, Physical review letters.

[12]  W. M. Liu,et al.  Bound of entanglement of assistance and monogamy constraints , 2009, 0904.2809.

[13]  Xue-Na Zhu,et al.  Monogamy properties of qubit systems , 2018, Quantum Inf. Process..

[14]  U. Sen,et al.  Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous , 2014 .

[15]  H. Weinfurter,et al.  Operational multipartite entanglement classes for symmetric photonic qubit states , 2009, 0911.5112.

[16]  Jeong San Kim,et al.  Unified entropy, entanglement measures and monogamy of multi-party entanglement , 2011, 1104.1675.

[17]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[18]  Zhong-Xiao Man,et al.  Entanglement measure and dynamics of multiqubit systems: non-Markovian versus Markovian and generalized monogamy relations , 2010 .

[19]  N. K. Sharma,et al.  On monogamy of four-qubit entanglement , 2017, Quantum Inf. Process..

[20]  Dong Yang A simple proof of monogamy of entanglement , 2006, quant-ph/0604168.

[21]  Xianqing Li-Jost,et al.  Monogamy relations of concurrence for any dimensional quantum systems , 2017, Quantum Inf. Process..

[22]  J. Vidal Concurrence in collective models , 2006, quant-ph/0603108.

[23]  G. H. Aguilar,et al.  Entanglement between more than two hundred macroscopic atomic ensembles in a solid , 2017, Nature Communications.

[24]  Wang Zhi-xi,et al.  Monogamy relations in tripartite quantum system , 2010 .

[25]  Sudha,et al.  What Does Monogamy in Higher Powers of a Correlation Measure Mean , 2014, 1409.1521.

[26]  He-Shan Song,et al.  Monogamy and entanglement in tripartite quantum states , 2009, 0901.3274.

[27]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[28]  Sudha,et al.  Comparative analysis of entanglement measures based on monogamy inequality , 2017 .

[29]  Xianqing Li-Jost,et al.  Improved monogamy relations with concurrence of assistance and negativity of assistance for multiqubit W-class states , 2018, Quantum Inf. Process..

[30]  Barry C. Sanders,et al.  Dual monogamy inequality for entanglement , 2007 .

[31]  Shao-Ming Fei,et al.  Tighter entanglement monogamy relations of qubit systems , 2017, Quantum Information Processing.

[32]  M. F. Cornelio,et al.  Strong superadditivity and monogamy of the Rényi measure of entanglement , 2009, 0906.0332.

[33]  Yongming Li,et al.  Tighter monogamy and polygamy relations in multiqubit systems , 2019, The European Physical Journal D.

[34]  Barry C. Sanders,et al.  Duality for monogamy of entanglement , 2006, quant-ph/0606168.

[35]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[36]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[37]  K. Mølmer,et al.  Pairwise entanglement in symmetric multi-qubit systems , 2001, quant-ph/0106145.

[38]  Sudha,et al.  Majorana representation of symmetric multiqubit states , 2011, Quantum Information Processing.

[39]  Soojoon Lee,et al.  Monogamy of entanglement and teleportation capability , 2009, 0905.0742.

[40]  M. Koashi,et al.  Monogamy of quantum entanglement and other correlations (6 pages) , 2004 .

[42]  D. J. Wineland,et al.  Preparation of Dicke states in an ion chain , 2009, 0909.0046.

[43]  Barry C. Sanders,et al.  Deterministic entanglement of assistance and monogamy constraints (4 pages) , 2005 .

[44]  G. Giorgi Monogamy properties of quantum and classical correlations , 2011, 1109.1696.

[45]  Lijun Liu,et al.  Monogamy relations of nonclassical correlations for multi-qubit states , 2017, Physics Letters A.

[46]  Zhenghan Wang,et al.  General monogamy relation for the entanglement of formation in multiqubit systems. , 2014, Physical review letters.

[47]  Marcin Pawlowski,et al.  Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations , 2009, 0907.3778.

[48]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[49]  Xue-Na Zhu,et al.  General monogamy relations of quantum entanglement for multiqubit W-class states , 2017, Quantum Information Processing.

[50]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[51]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[52]  D. Bruß,et al.  Are general quantum correlations monogamous? , 2011, Physical review letters.

[53]  H. Fan,et al.  Monogamy inequality in terms of negativity for three-qubit states , 2007, quant-ph/0702127.

[54]  U. Sen,et al.  All Multiparty Quantum States Can Be Made Monogamous , 2012, 1206.4029.

[55]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[56]  Chang-shui Yu,et al.  Entanglement monogamy of tripartite quantum states , 2008, 0803.2954.

[57]  Géza Tóth,et al.  Experimental entanglement of a six-photon symmetric Dicke state. , 2009, Physical review letters.

[58]  E. Solano,et al.  Entanglement equivalence of N-qubit symmetric states , 2009, 0908.0886.

[59]  Guifre Vidal,et al.  Disentangling theorem and monogamy for entanglement negativity , 2014, 1401.5843.

[60]  Heng Fan,et al.  Non-monogamy of quantum discord and upper bounds for quantum correlation , 2011, Quantum Inf. Comput..

[61]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[62]  Xue-Na Zhu,et al.  Entanglement Monogamy Relations of Qubit Systems , 2014, 1409.1022.

[63]  Jeong San Kim,et al.  Entanglement monogamy of multipartite higher-dimensional quantum systems using convex-roof extended negativity , 2008, 0811.2047.

[64]  Shao-Ming Fei,et al.  Tighter monogamy relations of quantum entanglement for multiqubit W-class states , 2017, Quantum Inf. Process..

[65]  M. P. Seevinck,et al.  Monogamy of correlations versus monogamy of entanglement , 2009, Quantum Inf. Process..

[66]  Gilad Gour,et al.  Monogamy of entanglement without inequalities , 2017, Quantum.

[67]  Sudha,et al.  Spin squeezing in Dicke-class of states with non-orthogonal spinors , 2019, Chinese Physics B.

[68]  Yong-Cheng Ou,et al.  Violation of monogamy inequality for higher-dimensional objects , 2006, quant-ph/0612127.

[69]  M. Seevinck Monogamy of Correlations vs . Monogamy of Entanglement , 2009 .

[70]  Ettore Majorana Atomi orientati in campo magnetico variabile , 1932 .

[71]  F. Verstraete,et al.  General monogamy inequality for bipartite qubit entanglement. , 2005, Physical review letters.

[72]  Sudha,et al.  Monogamy of quantum correlations in three-qubit pure states , 2011, 1110.3026.

[73]  M. Alonso,et al.  Entanglement polygon inequality in qubit systems , 2018, New Journal of Physics.

[74]  H. Weinfurter,et al.  Multiqubit entanglement engineering via projective measurements , 2009, 0901.4091.

[75]  Zhuo-Liang Cao,et al.  Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement , 2016, Scientific Reports.

[76]  Damian Markham,et al.  The maximally entangled symmetric state in terms of the geometric measure , 2010, 1003.5643.

[77]  Barry C. Sanders,et al.  Deterministic entanglement of assistance and monogamy constraints , 2005 .

[78]  Why entanglement of formation is not generally monogamous , 2011, 1110.1054.

[79]  W. Wootters,et al.  Entanglement sharing among quantum particles with more than two orthogonal states , 2001 .

[80]  Shao-Ming Fei,et al.  Proper monogamy inequality for arbitrary pure quantum states , 2008 .