Magnetic Sensor Based on Giant Magneto-Impedance in Commercial Inductors

Magnetic sensors have various applications in navigation, power distribution, robotics, factory automation, and medical diagnosis. The development of highly sensitive magnetic sensors usually requires complicated and costly fabrication process. Herein, we report giant magneto-impedance of 41036% in the commercially available ferrite core inductors. A magnetic field detection limit of 10 nT at 1 Hz has been obtained by directly measuring the impedance of the as-obtained inductor without any optimization. With a 100 pF capacitor in series connection with the inductor where lower impedance facilitates the measurement process, a limit of detection of 625 pT at 1 Hz has been obtained in the series RLC resonator. These results can be understood in terms of the magnetic field-dependent self-resonance in the inductors which act as lumped RLC resonators. Compared with the traditional electromagnetic induction sensing mode, the magneto-impedance sensing mode shows 5000 folds improvement in the magnetic field detection capability.

[1]  Ming Liu,et al.  Reconfigurable Magnetoresistive Sensor Based on Magnetoelectric Coupling , 2020, Advanced Electronic Materials.

[2]  S. Dong,et al.  Magnetoelectric Laminate Composites: An Overview , 2008 .

[3]  Javad Frounchi,et al.  Fully integrated probe for proton nuclear magnetic resonance magnetometry , 2001 .

[4]  V. Iannotti,et al.  Potential application of innovative magnetoelastic resonators for vibration detection , 2001 .

[5]  M. Rinaldi,et al.  Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection , 2013, Scientific Reports.

[6]  Hua-Xin Peng,et al.  Giant magnetoimpedance materials: Fundamentals and applications , 2008 .

[7]  M. Phan,et al.  Advanced Magnetic Microwires as Sensing Elements for LC-Resonant-Type Magnetoimpedance Sensors: A Comprehensive Review , 2012 .

[8]  F. Bai,et al.  Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient , 2005 .

[9]  E. Riis Optical Magnetometry , 2013 .

[10]  J. Rigelsford,et al.  Magnetic Sensors and Magnetometers , 2002 .

[11]  S. Manalis,et al.  Weighing of biomolecules, single cells and single nanoparticles in fluid , 2007, Nature.

[12]  Pavel Ripka,et al.  Advances in fluxgate sensors , 2003 .

[13]  Eckhard Quandt,et al.  MEMS magnetic field sensor based on magnetoelectric composites , 2012 .

[14]  M. Roukes,et al.  Comparative advantages of mechanical biosensors. , 2011, Nature nanotechnology.

[15]  J. Teufel,et al.  Nanomechanical motion measured with an imprecision below that at the standard quantum limit. , 2009, Nature nanotechnology.

[16]  Christine Kirchhof,et al.  Giant magnetoelectric effect in vacuum , 2013 .

[17]  A. Valavanoglou,et al.  The Search-Coil Magnetometer for MMS , 2016 .

[18]  Junqi Gao,et al.  A Man-Portable Magnetoelectric DC Magnetic Sensor With Extremely High Sensitivity , 2018, IEEE Electron Device Letters.

[19]  Galina V. Kurlyandskaya,et al.  Giant-magnetoimpedance-based sensitive element as a model for biosensors , 2003 .

[20]  Mario H. Acuna,et al.  Space-based magnetometers , 2002 .

[21]  M. Batzill,et al.  A magnetic sensor using a 2D van der Waals ferromagnetic material , 2020, Scientific Reports.

[22]  Yu Hui,et al.  High Resolution Magnetometer Based on a High Frequency Magnetoelectric MEMS-CMOS Oscillator , 2015, Journal of Microelectromechanical Systems.

[23]  S. Tumański Induction coil sensors—a review , 2007 .

[24]  Ming Liu,et al.  Linear Anisotropic Magnetoresistive Sensor Without Barber-Pole Electrodes , 2019, IEEE Electron Device Letters.

[25]  M. Romalis,et al.  NMR detection with an atomic magnetometer. , 2005, Physical review letters.

[26]  A. Zhukov,et al.  Giant magnetoimpedance effect in soft magnetic wires for sensor applications , 1997 .

[27]  Andoni Lasheras,et al.  Enhanced mass sensitivity in novel magnetoelastic resonators geometries for advanced detection systems , 2019, Sensors and Actuators B: Chemical.

[28]  John G. Jones,et al.  Acoustically actuated ultra-compact NEMS magnetoelectric antennas , 2017, Nature Communications.

[29]  M. Vázquez,et al.  Giant magnetoimpedance effect in a glass-coated microwire LC-resonator for high-frequency sensitive magnetic sensor applications , 2007 .

[30]  M. Roukes,et al.  Toward single-molecule nanomechanical mass spectrometry , 2005, Nature nanotechnology.

[31]  Sydney S. Cash,et al.  Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect , 2016, Advanced materials.

[32]  Pavel Ripka,et al.  Review of fluxgate sensors , 1992 .

[33]  K. Jensen,et al.  An atomic-resolution nanomechanical mass sensor. , 2008, Nature Nanotechnology.

[34]  Andre Balogh,et al.  Planetary Magnetic Field Measurements: Missions and Instrumentation , 2010 .

[35]  J. Chaste,et al.  A nanomechanical mass sensor with yoctogram resolution. , 2012, Nature nanotechnology.

[36]  Leif Grönberg,et al.  Kinetic inductance magnetometer , 2014, Nature Communications.