High-Performance Piezoelectric Energy Harvesters and Their Applications

Energy harvesting holds great potential to achieve long-lifespan self-powered operations of wireless sensor networks, wearable devices, and medical implants, and thus has attracted substantial interest from both academia and industry. This paper presents a comprehensive review of piezoelectric energy-harvesting techniques developed in the last decade. The piezoelectric effect has been widely adopted to convert mechanical energy to electricity, due to its high energy conversion efficiency, ease of implementation, and miniaturization. From the viewpoint of applications, we are most concerned about whether an energy harvester can generate sufficient power under a variable excitation. Therefore, here we concentrate on methodologies leading to high power output and broad operational bandwidth. Different designs, nonlinear methods, optimization techniques, and harvesting materials are reviewed and discussed in depth. Furthermore, we identify four promising applications: shoes, pacemakers, tire pressure monitoring systems, and bridge and building monitoring. We review new high-performance energy harvesters proposed for each application.

[1]  Chunsheng Yang,et al.  Development of high performance piezoelectric d33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film , 2014 .

[2]  Ephrahim Garcia,et al.  Beam Shape Optimization for Power Harvesting , 2010 .

[3]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[4]  Hongping Zhu,et al.  Electromagnetic energy harvesting from structural vibrations during earthquakes , 2016 .

[5]  Yves St-Amant,et al.  Improving the performance of a piezoelectric energy harvester using a variable thickness beam , 2010 .

[6]  A. F. Arrieta,et al.  Broadband vibration energy harvesting based on cantilevered piezoelectric bi-stable composites , 2013 .

[7]  Faisal Karim Shaikh,et al.  Energy harvesting in wireless sensor networks: A comprehensive review , 2016 .

[8]  Saeed Ziaei-Rad,et al.  Experimental and theoretical investigations on piezoelectric-based energy harvesting from bridge vibrations under travelling vehicles , 2016 .

[9]  Emílio Carlos Nelli Silva,et al.  Design of piezoelectric energy harvesting devices and laminate structures by applying topology optimization , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[10]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[11]  Zhou Li,et al.  Energy Harvesting from the Animal/Human Body for Self-Powered Electronics. , 2017, Annual review of biomedical engineering.

[12]  Xuecang Geng,et al.  Advantages and Challenges of Relaxor-PbTiO3 Ferroelectric Crystals for Electroacoustic Transducers- A Review. , 2015, Progress in materials science.

[13]  Jan M. Rabaey,et al.  Improving power output for vibration-based energy scavengers , 2005, IEEE Pervasive Computing.

[14]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[15]  Zhifei Shi,et al.  A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads , 2016 .

[16]  Charles R. Farrar,et al.  Energy Harvesting and Wireless Energy Transmission for Embedded SHM Sensor Nodes , 2010 .

[17]  Thad Starner,et al.  Human-Powered Wearable Computing , 1996, IBM Syst. J..

[18]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[19]  S. Vandenberghe,et al.  Energy Harvesting from the Beating Heart by a Mass Imbalance Oscillation Generator , 2012, Annals of Biomedical Engineering.

[20]  Rudra Pratap,et al.  Performance Enhancement of Piezoelectric Energy Harvesters Using Multilayer and Multistep Beam Configurations , 2015, IEEE Sensors Journal.

[21]  Wentai Liu,et al.  Retinal Prosthesis , 2018, Essentials in Ophthalmology.

[22]  Zhengbao Yang,et al.  High-efficiency compressive-mode energy harvester enhanced by a multi-stage force amplification mechanism , 2014 .

[23]  Ari J. Tuononen,et al.  A laser-based sensor system for tire tread deformation measurement , 2014 .

[24]  Shashank Priya,et al.  Two-dimensional concentrated-stress low-frequency piezoelectric vibration energy harvesters , 2015 .

[25]  Shad Roundy,et al.  Energy harvester for rotating environments using offset pendulum and nonlinear dynamics , 2014 .

[26]  Amr M. Baz,et al.  Single Degree of Freedom Shear-Mode Piezoelectric Energy Harvester , 2013 .

[27]  Xuan Wu,et al.  A Seesaw-Structured Energy Harvester With Superwide Bandwidth for TPMS Application , 2014, IEEE/ASME Transactions on Mechatronics.

[28]  Sang Hyo Kim,et al.  Analysis of piezoelectric effects on various loading conditions for energy harvesting in a bridge system , 2011 .

[29]  Saied Taheri,et al.  An investigation of intelligent tires using multiscale modeling of cord-rubber composites , 2018 .

[30]  Daniel J. Inman,et al.  Energy Harvesting of Piezoelectric Stack Actuator From a Shock Event , 2014 .

[31]  Sihong Zhao,et al.  On the stochastic excitation of monostable and bistable electroelastic power generators: Relative advantages and tradeoffs in a physical system , 2013 .

[32]  Long T. Phan,et al.  Dynamic characteristics of five tall buildings during strong and low‐amplitude motions , 1993 .

[33]  Mohammed F. Daqaq,et al.  Energy harvesting in the super-harmonic frequency region of a twin-well oscillator , 2012 .

[34]  David J. Wagg,et al.  Nonlinear dynamic response and modeling of a bi-stable composite plate for applications to adaptive structures , 2009 .

[35]  Zhong Lin Wang,et al.  Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. , 2010, Nature communications.

[36]  Oliver G. Schmidt,et al.  A Flexible PMN‐PT Ribbon‐Based Piezoelectric‐Pyroelectric Hybrid Generator for Human‐Activity Energy Harvesting and Monitoring , 2017 .

[37]  Lukai Guo,et al.  Potentials of piezoelectric and thermoelectric technologies for harvesting energy from pavements , 2017 .

[38]  Shao-Tuan Chen,et al.  A new electrode design method in piezoelectric vibration energy harvesters to maximize output power , 2017 .

[39]  Marco Ferrari,et al.  Piezoelectric buckled beams for random vibration energy harvesting , 2012 .

[40]  Cesare Stefanini,et al.  Piezoelectric Energy Harvesting Solutions , 2014, Sensors.

[41]  Benjamin A. M. Owens,et al.  Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments , 2012 .

[42]  Kurt Maute,et al.  Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells , 2009 .

[43]  Yiannos Manoli,et al.  Energy harvesting from human motion: exploiting swing and shock excitations , 2015 .

[44]  Mohammed F. Daqaq,et al.  Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise , 2011 .

[45]  L. Moro,et al.  Harvested power and sensitivity analysis of vibrating shoe-mounted piezoelectric cantilevers , 2010 .

[46]  Michael C. McAlpine,et al.  Flexible piezoelectric PMN-PT nanowire-based nanocomposite and device. , 2013, Nano letters.

[47]  Hi Gyu Moon,et al.  Powerful curved piezoelectric generator for wearable applications , 2015 .

[48]  Brian L. Wardle,et al.  Efficiency of piezoelectric mechanical vibration energy harvesting , 2015 .

[49]  Ari J. Tuononen,et al.  Tyre contact length on dry and wet road surfaces measured by three-axial accelerometer , 2015 .

[50]  B. H. Stark,et al.  Review of Power Conditioning for Kinetic Energy Harvesting Systems , 2012, IEEE Transactions on Power Electronics.

[51]  Nizar Lajnef,et al.  Tunable Energy Harvesting from Ambient Vibrations in Civil Structures , 2012 .

[52]  P Woafo,et al.  Analysis of tristable energy harvesting system having fractional order viscoelastic material. , 2015, Chaos.

[53]  S. Priya,et al.  Piezoelectric MEMS for energy harvesting , 2012 .

[54]  Yuhuan Xu,et al.  Ferroelectric Materials and Their Applications , 2023, Japanese Journal of Applied Physics.

[55]  Zhengbao Yang,et al.  Modeling and experimental parametric study of a tri-leg compliant orthoplanar spring based multi-mode piezoelectric energy harvester , 2018 .

[56]  Ye Zhang,et al.  Piezoelectric-based energy harvesting in bridge systems , 2014 .

[57]  Lihua Tang,et al.  Obtaining high-energy responses of nonlinear piezoelectric energy harvester by voltage impulse perturbations , 2017 .

[58]  X. Papademetris,et al.  Cardiac Image Analysis: Motion and Deformation , 2000 .

[59]  David A. Winter,et al.  Biomechanics and Motor Control of Human Movement , 1990 .

[60]  Rahul Sarpeshkar,et al.  An ultra-low-power programmable analog bionic ear processor , 2005, IEEE Transactions on Biomedical Engineering.

[61]  Emre Tufekcioglu,et al.  A flextensional piezo-composite structure for energy harvesting applications , 2014 .

[62]  Konstantin Turitsyn,et al.  Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters , 2018 .

[63]  Davood Shahrjerdi,et al.  Layer transfer by controlled spalling , 2013 .

[64]  J. S. Partridge,et al.  An analysis of the energy flow and energy potential from human energy harvesting with a focus on walking , 2016 .

[65]  Daniel J. Inman,et al.  Chaos in the fractionally damped broadband piezoelectric energy generator , 2015 .

[66]  Wei Zhang,et al.  Experimental study of a multi-impact energy harvester under low frequency excitations , 2014 .

[67]  Daniel J. Inman,et al.  Bandwidth of a Nonlinear Harvester with Optimized Electrical Load , 2013 .

[68]  Brian P. Mann,et al.  Harmonic balance analysis of the bistable piezoelectric inertial generator , 2012 .

[69]  Anthony Marin,et al.  Multiple cell configuration electromagnetic vibration energy harvester , 2011 .

[70]  Song Xia,et al.  Enhanced energy harvesting performance of the piezoelectric unimorph with perpendicular electrodes , 2014 .

[71]  T. Galchev,et al.  Long-term testing of a vibration harvesting system for the structural health monitoring of bridges , 2014 .

[72]  Just L. Herder,et al.  Bistable vibration energy harvesters: A review , 2013 .

[73]  S. Roundy Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration-to-Electricity Conversion , 2003 .

[74]  Paul Cahill,et al.  Effect of Road Surface, Vehicle, and Device Characteristics on Energy Harvesting from Bridge–Vehicle Interactions , 2016, Comput. Aided Civ. Infrastructure Eng..

[75]  Dung-An Wang,et al.  A shear mode piezoelectric energy harvester based on a pressurized water flow , 2011 .

[76]  Daniel J. Inman,et al.  Optimal configurations of bistable piezo-composites for energy harvesting , 2012 .

[77]  Vytautas Jurenas,et al.  Cutting tool vibration energy harvesting for wireless sensors applications , 2015 .

[78]  Junyi Cao,et al.  Theoretical analysis and experimental verification for improving energy harvesting performance of nonlinear monostable energy harvesters , 2016, Nonlinear Dynamics.

[79]  Daniel J. Inman,et al.  Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters , 2012 .

[80]  Yang Liu,et al.  A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies , 2015 .

[81]  J. Dugundji,et al.  Modeling and experimental verification of proof mass effects on vibration energy harvester performance , 2010 .

[82]  F. Moll,et al.  Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts , 2005 .

[83]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[84]  P. D. Mitcheson,et al.  Power-Extraction Circuits for Piezoelectric Energy Harvesters in Miniature and Low-Power Applications , 2012, IEEE Transactions on Power Electronics.

[85]  Mark S Humayun,et al.  Mini Drug Pump for Ophthalmic Use , 2009, Current eye research.

[86]  Elisabeth Dufour-Gergam,et al.  An active piezoelectric energy extraction method for pressure energy harvesting , 2012 .

[87]  Qinglong Zheng,et al.  VIBRATION ENERGY HARVESTING DEVICE BASED ON ASYMMETRIC AIR-SPACED CANTILEVERS FOR TIRE PRESSURE MONITORING SYSTEM , 2009 .

[88]  Clive A. Randall,et al.  Dielectric properties of dielectrophoretically assembled particulate-polymer composites , 1998 .

[89]  Hidetoshi Kotera,et al.  High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers , 2010 .

[90]  M H Ansari,et al.  Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers , 2017, Smart materials & structures.

[91]  Jeffrey Yukio Hayashida Unobtrusive Integration of Magnetic Generator Systems into Common Footwear , 2000 .

[92]  Jean W. Zu,et al.  Design and development of a broadband magnet-induced dual-cantilever piezoelectric energy harvester , 2014 .

[93]  X. D. Xie,et al.  Energy harvesting from high-rise buildings by a piezoelectric harvester device , 2015 .

[94]  Junyi Cao,et al.  Broadband tristable energy harvester: Modeling and experiment verification , 2014 .

[95]  Abdessattar Abdelkefi,et al.  Design and performance of variable-shaped piezoelectric energy harvesters , 2014 .

[96]  Seung-Bok Choi,et al.  An investigation on piezoelectric energy harvesting for MEMS power sources , 2005 .

[97]  A. Takezawa,et al.  Design methodology of piezoelectric energy-harvesting skin using topology optimization , 2014 .

[98]  Iftikhar Ahmad,et al.  Review of Energy Harvesters Utilizing Bridge Vibrations , 2016 .

[99]  N. Roveri,et al.  OPTYRE – A new technology for tire monitoring: Evidence of contact patch phenomena , 2016 .

[100]  Brian L. Wardle,et al.  Effect of electrode configurations on piezoelectric vibration energy harvesting performance , 2015 .

[101]  Jee-Hou Ho,et al.  On accumulation of water droplets in piezoelectric energy harvesting , 2017 .

[102]  A. Moure,et al.  Feasible integration in asphalt of piezoelectric cymbals for vibration energy harvesting , 2016 .

[103]  Paul Cahill,et al.  Energy Harvesting from Train-Induced Response in Bridges , 2014 .

[104]  S. E. Prasad,et al.  A Shear-Mode Energy Harvesting Device Based on Torsional Stresses , 2014, IEEE/ASME Transactions on Mechatronics.

[105]  Zhuo Xu,et al.  Reversible Nonlinear Energy Harvester Tuned by Tilting and Enhanced by Nonlinear Circuits , 2016, IEEE/ASME Transactions on Mechatronics.

[106]  Joseph A. Paradiso,et al.  Energy Scavenging with Shoe-Mounted Piezoelectrics , 2001, IEEE Micro.

[107]  Mohammad Behroozi,et al.  Modeling of Strain Energy Harvesting in Pneumatic Tires Using Piezoelectric Transducer , 2014 .

[108]  Pilkee Kim,et al.  A multi-stable energy harvester: Dynamic modeling and bifurcation analysis , 2014 .

[109]  Zhiqun Daniel Deng,et al.  An Energy Harvesting Underwater Acoustic Transmitter for Aquatic Animals , 2016, Scientific Reports.

[110]  Vivek Y. Reddy,et al.  Percutaneous Implantation of an Entirely Intracardiac Leadless Pacemaker. , 2015, The New England journal of medicine.

[111]  K. Uchino The Development of Piezoelectric Materials and the New Perspective , 2010 .

[112]  T. Galchev,et al.  Micro Power Generator for Harvesting Low-Frequency and Nonperiodic Vibrations , 2011, Journal of Microelectromechanical Systems.

[113]  Ephrahim Garcia,et al.  The Power and Efficiency Limits of Piezoelectric Energy Harvesting , 2014 .

[114]  Ann Marie Sastry,et al.  Powering MEMS portable devices—a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems , 2008 .

[115]  Byung Man Kwak,et al.  Design optimization of piezoelectric energy harvester subject to tip excitation , 2012, Journal of Mechanical Science and Technology.

[116]  Atanas A. Popov,et al.  Piezoelectric energy harvesting for tyre pressure measurement applications , 2013 .

[117]  Yang Jian,et al.  Vibration energy harvesting system for railroad safety based on running vehicles , 2014 .

[118]  John A Rogers,et al.  Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm , 2014, Proceedings of the National Academy of Sciences.

[119]  Ping Li,et al.  Modeling, characterization and fabrication of vibration energy harvester using Terfenol-D/PZT/Terfenol-D composite transducer , 2009 .

[120]  Pilkee Kim,et al.  Dynamic and energetic characteristics of a tri-stable magnetopiezoelastic energy harvester , 2015 .

[121]  Alper Erturk,et al.  On the efficiency of piezoelectric energy harvesters , 2017 .

[122]  S. Sugiyama,et al.  Fabrication and analysis of high-performance piezoelectric MEMS generators , 2012 .

[123]  P. Wright,et al.  Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload , 2006 .

[124]  S. H. Kim,et al.  Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting , 2009 .

[125]  Yaowen Yang,et al.  A novel two-degrees-of-freedom piezoelectric energy harvester , 2013 .

[126]  Chunsheng Yang,et al.  A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding , 2016, Scientific Reports.

[127]  Qingbo He,et al.  Complementary multi-mode low-frequency vibration energy harvesting with chiral piezoelectric structure , 2017 .

[128]  Kanwar Bharat Singh,et al.  Piezoelectric vibration energy harvesting system with an adaptive frequency tuning mechanism for intelligent tires , 2012 .

[129]  Mohammad H. Malakooti,et al.  Piezoelectric energy harvesting through shear mode operation , 2015 .

[130]  Xiaoguang Yang,et al.  A Strain-Based Method to Estimate Slip Angle and Tire Working Conditions for Intelligent Tires Using Fuzzy Logic , 2017, Sensors.

[131]  Lei Zuo,et al.  Large-scale vibration energy harvesting , 2013 .

[132]  Zhengbao Yang,et al.  Comparison of PZN-PT, PMN-PT single crystals and PZT ceramic for vibration energy harvesting , 2016 .

[133]  D Bergqvist,et al.  Noninvasive measurement of diameter changes in the distal abdominal aorta in man. , 1992, Ultrasound in medicine & biology.

[134]  V. K. Gupta,et al.  Piezoelectric energy harvester for low engine vibrations , 2017 .

[135]  Yong Zhang,et al.  Investigation of a d15 mode PZT-51 piezoelectric energy harvester with a series connection structure , 2012 .

[136]  Kimihiko Nakano,et al.  Effectiveness Testing of a Piezoelectric Energy Harvester for an Automobile Wheel Using Stochastic Resonance , 2016, Sensors.

[137]  D. Markley,et al.  Energy Harvesting Using a Piezoelectric “Cymbal” Transducer in Dynamic Environment , 2004 .

[138]  Lei Gu,et al.  Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation , 2011, Microelectron. J..

[139]  J. Park,et al.  Modeling and Characterization of Piezoelectric $d_{33}$ -Mode MEMS Energy Harvester , 2010, Journal of Microelectromechanical Systems.

[140]  I. Oh,et al.  Piezoelectric thin films: an integrated review of transducers and energy harvesting , 2016 .

[141]  Yang Yu,et al.  A barbell-shaped high-temperature piezoelectric vibration energy harvester based on BiScO3-PbTiO3 ceramic , 2016 .

[142]  Kangqi Fan,et al.  Scavenging energy from human walking through a shoe-mounted piezoelectric harvester , 2017 .

[143]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[144]  Siamak Arzanpour,et al.  Broadening the Frequency Bandwidth of a Tire-Embedded Piezoelectric-Based Energy Harvesting System Using Coupled Linear Resonating Structure , 2015, IEEE/ASME Transactions on Mechatronics.

[145]  Honggang Hu,et al.  An application of stochastic resonance for energy harvesting in a bistable vibrating system , 2014 .

[146]  Giuseppe Quaranta,et al.  Energy harvesting from electrospun piezoelectric nanofibers for structural health monitoring of a cable-stayed bridge , 2016 .

[147]  Koilmani Sumangala,et al.  Multiresonant Frequency Piezoelectric Energy Harvesters Integrated with High Sensitivity Piezoelectric Accelerometer for Bridge Health Monitoring Applications , 2017, Adv. Artif. Neural Syst..

[148]  Michael W. Shafer,et al.  The case for energy harvesting on wildlife in flight , 2015 .

[149]  Yaowen Yang,et al.  Toward Broadband Vibration-based Energy Harvesting , 2010 .

[150]  S. Evoy,et al.  A review of piezoelectric polymers as functional materials for electromechanical transducers , 2014 .

[151]  Azrul Azlan Hamzah,et al.  Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker , 2015 .

[152]  P. Hagedorn,et al.  A piezoelectric bistable plate for nonlinear broadband energy harvesting , 2010 .

[153]  Yaowen Yang,et al.  A nonlinear piezoelectric energy harvester with magnetic oscillator , 2012 .

[154]  Ulrike Wallrabe,et al.  Review on Electrodynamic Energy Harvesters - A Classification Approach , 2013, Micromachines.

[155]  Remon Pop-Iliev,et al.  Piezoelectric power generation for sensor applications: design of a battery-less wireless tire pressure sensor , 2011, Microtechnologies.

[156]  Grzegorz Litak,et al.  Magnetopiezoelastic energy harvesting driven by random excitations , 2010 .

[157]  H. Radousky,et al.  Energy harvesting: an integrated view of materials, devices and applications , 2012, Nanotechnology.

[158]  Junyi Cao,et al.  Exploitation of a tristable nonlinear oscillator for improving broadband vibration energy harvesting , 2014 .

[159]  In-Ho Kim,et al.  An energy harvesting system using the wind-induced vibration of a stay cable for powering a wireless sensor node , 2011 .

[160]  Jingjing Zhao,et al.  A Shoe-Embedded Piezoelectric Energy Harvester for Wearable Sensors , 2014, Sensors.

[161]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[162]  S Serge Barold,et al.  Digital technology for cardiac pacing. , 2005, The American journal of cardiology.

[163]  Xingjian Jing,et al.  A comprehensive review on vibration energy harvesting: Modelling and realization , 2017 .

[164]  Yiannis Andreopoulos,et al.  The performance of a self-excited fluidic energy harvester , 2012 .

[165]  Hung Cao,et al.  Power Approaches for Implantable Medical Devices , 2015, Sensors.

[166]  L.S.Y. Wong,et al.  A very low-power CMOS mixed-signal IC for implantable pacemaker applications , 2004, IEEE Journal of Solid-State Circuits.

[167]  C. S. Cai,et al.  Acoustic emission monitoring of bridges: Review and case studies , 2010 .

[168]  Paul M. Weaver,et al.  Charge redistribution in piezoelectric energy harvesters , 2012 .

[169]  Timon Rabczuk,et al.  Topology optimization of piezoelectric nanostructures , 2016 .

[170]  Albert P. Pisano,et al.  Corrugated aluminum nitride energy harvesters for high energy conversion effectiveness , 2011 .

[171]  Grzegorz Litak,et al.  ENERGY HARVESTING IN A MAGNETOPIEZOELASTIC SYSTEM DRIVEN BY RANDOM EXCITATIONS WITH UNIFORM AND GAUSSIAN DISTRIBUTIONS , 2011 .

[172]  Bill J. Van Heyst,et al.  A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms , 2015 .

[173]  Michael I. Friswell,et al.  Analysis of energy harvesters for highway bridges , 2011 .

[174]  Gregoire Nicolis,et al.  Stochastic resonance , 2007, Scholarpedia.

[175]  Steve Dunn,et al.  Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters , 2015 .

[176]  Quan Wang,et al.  Energy harvesting from high-rise buildings by a piezoelectric coupled cantilever with a proof mass , 2013 .

[177]  Dibin Zhu,et al.  Novel Miniature Airflow Energy Harvester for Wireless Sensing Applications in Buildings , 2013, IEEE Sensors Journal.

[178]  Daniel J. Inman,et al.  Impact-induced high-energy orbits of nonlinear energy harvesters , 2015 .

[179]  Wing Kam Liu,et al.  A level set approach for optimal design of smart energy harvesters , 2010 .

[180]  Ari J. Tuononen,et al.  Optical position detection to measure tyre carcass deflections , 2008 .

[181]  Jean W. Zu,et al.  Design and development of a novel bi-directional piezoelectric energy harvester , 2014 .

[182]  Joseph W. Matiko,et al.  Review of the application of energy harvesting in buildings , 2013 .

[183]  Daniel J. Inman,et al.  Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams , 2009 .

[184]  Zhong Lin Wang,et al.  Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. , 2012, Angewandte Chemie.

[185]  C. Bowen,et al.  Energy Harvesting Technologies for Tire Pressure Monitoring Systems , 2015 .

[186]  Arnold P G Hoeks,et al.  Shear stress depends on vascular territory: comparison between common carotid and brachial artery. , 2003, Journal of applied physiology.

[187]  Alper Erturk,et al.  Piezoelectric energy harvesting for civil infrastructure system applications: Moving loads and surface strain fluctuations , 2011 .

[188]  Xiaoning Jiang,et al.  Energy harvesting using a PZT ceramic multilayer stack , 2013 .

[189]  Jee-Hou Ho,et al.  Performance of a piezoelectric energy harvester in actual rain , 2017 .

[190]  Ari J. Tuononen,et al.  Rolling deformation of truck tires: Measurement and analysis using a tire sensing approach , 2015 .

[191]  Remon Pop-Iliev,et al.  Battery-and wire-less tire pressure measurement systems (TPMS) sensor , 2012 .

[192]  Mohammed F. Daqaq,et al.  Characterizing the effective bandwidth of tri-stable energy harvesters , 2017 .

[193]  Chin Hong Wong,et al.  Development of Vibration-Based Piezoelectric Raindrop Energy Harvesting System , 2017, Journal of Electronic Materials.

[194]  Eiichi Sasaki,et al.  Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems , 2016 .

[195]  William W. Clark,et al.  Piezoelectric Energy Harvesting with a Clamped Circular Plate: Experimental Study , 2005 .

[196]  Ratnesh Kumar,et al.  A Broadband Bistable Piezoelectric Energy Harvester With Nonlinear High-Power Extraction , 2015, IEEE Transactions on Power Electronics.

[197]  Zhong Lin Wang,et al.  Progress in nanogenerators for portable electronics , 2012 .

[198]  Yu Jia,et al.  Power Optimization by Mass Tuning for MEMS Piezoelectric Cantilever Vibration Energy Harvesting , 2016, Journal of Microelectromechanical Systems.

[199]  Raziel Riemer,et al.  Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions , 2011, Journal of NeuroEngineering and Rehabilitation.

[200]  Colin R. McInnes,et al.  Enhanced Vibrational Energy Harvesting Using Non-linear Stochastic Resonance , 2008 .

[201]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[202]  Byeng D. Youn,et al.  Robust segment-type energy harvester and its application to a wireless sensor , 2009 .

[203]  Geon-Tae Hwang,et al.  Self‐Powered Wireless Sensor Node Enabled by an Aerosol‐Deposited PZT Flexible Energy Harvester , 2016 .

[204]  A. Amann,et al.  Surfing the High Energy Output Branch of Nonlinear Energy Harvesters. , 2016, Physical review letters.

[205]  Ying Dong,et al.  Energy harvester array using piezoelectric circular diaphragm for broadband vibration , 2014 .

[206]  Junyi Cao,et al.  Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement , 2016 .

[207]  Dae-Yong Jeong,et al.  Ultra-Low Resonant Piezoelectric MEMS Energy Harvester With High Power Density , 2017, Journal of Microelectromechanical Systems.

[208]  Chang Kyu Jeong,et al.  In Vivo Self‐Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters , 2017 .

[209]  Yu-Jen Wang,et al.  Wideband Electromagnetic Energy Harvesting from a Rotating Wheel , 2012 .

[210]  Li Haitao,et al.  Dynamics and coherence resonance of tri-stable energy harvesting system , 2015 .

[211]  C. Richards,et al.  Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment , 2005 .

[212]  Wei Li,et al.  Harvesting vibration energy using two modal vibrations of a folded piezoelectric device , 2015 .

[213]  H. J. van de Wiel,et al.  Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites , 2011 .

[214]  Ghislain Despesse,et al.  Harvesting raindrop energy: experimental study , 2008 .

[215]  Hong Goo Yeo,et al.  Efficient Piezoelectric Energy Harvesters Utilizing (001) Textured Bimorph PZT Films on Flexible Metal Foils , 2016 .

[216]  Alper Erturk,et al.  M-shaped asymmetric nonlinear oscillator for broadband vibration energy harvesting: Harmonic balance analysis and experimental validation , 2014 .

[217]  P. LaStayo,et al.  When active muscles lengthen: properties and consequences of eccentric contractions. , 2001, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[218]  Zhengbao Yang,et al.  Introducing arc-shaped piezoelectric elements into energy harvesters , 2017 .

[219]  Mohamed Sultan Mohamed Ali,et al.  Micro-scale energy harvesting devices: Review of methodological performances in the last decade , 2016 .

[220]  Zhong Lin Wang From nanogenerators to piezotronics—A decade-long study of ZnO nanostructures , 2012 .

[221]  Daniel Guyomar,et al.  Experimental Duffing oscillator for broadband piezoelectric energy harvesting , 2011 .

[222]  Kyle Jiang,et al.  A Comprehensive Study on Technologies of Tyre Monitoring Systems and Possible Energy Solutions , 2014, Sensors.

[223]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .

[224]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[225]  Ping Li,et al.  A vibration energy harvester using magnet/piezoelectric composite transducer , 2014 .

[226]  Chunsheng Yang,et al.  High performance bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin beryllium-bronze substrate , 2017 .

[227]  Ashutosh Tiwari,et al.  Design, analysis and testing of a piezoelectric flex transducer for harvesting bio-kinetic energy , 2013 .

[228]  Manfred Kaltenbacher,et al.  Topology optimization of a cantilevered piezoelectric energy harvester using stress norm constraints , 2013 .

[229]  Ryan L. Harne,et al.  On the fundamental and superharmonic effects in bistable energy harvesting , 2014 .

[230]  Geon-Tae Hwang,et al.  A Reconfigurable Rectified Flexible Energy Harvester via Solid‐State Single Crystal Grown PMN–PZT , 2015 .

[231]  N. Hudak,et al.  Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion , 2008 .

[232]  Chang Kyu Jeong,et al.  Self‐Powered Cardiac Pacemaker Enabled by Flexible Single Crystalline PMN‐PT Piezoelectric Energy Harvester , 2014, Advanced materials.

[233]  Wenning Di,et al.  Cantilever driving low frequency piezoelectric energy harvester using single crystal material 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 , 2012 .

[234]  C. K. Lee,et al.  Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film , 2009 .

[235]  Fabrice Auzanneau,et al.  WIRE TROUBLESHOOTING AND DIAGNOSIS: REVIEW AND PERSPECTIVES , 2013 .

[236]  R. van Schaijk,et al.  A MEMS vibration energy harvester for automotive applications , 2013, Microtechnologies for the New Millennium.

[237]  T. Hortobágyi,et al.  Muscles do more positive than negative work in human locomotion , 2007, Journal of Experimental Biology.

[238]  Chung-Chih Lin,et al.  A Nonlinear Suspended Energy Harvester for a Tire Pressure Monitoring System , 2015, Micromachines.

[239]  T. Torfs,et al.  Low Power Wireless Sensor Network for Building Monitoring , 2013, IEEE Sensors Journal.

[240]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[241]  Yang Zhu,et al.  Theoretical and experimental investigation of a nonlinear compressive-mode energy harvester with high power output under weak excitations , 2015 .

[242]  Daniel J. Inman,et al.  Nonlinear dynamics of a bistable piezoelectric-composite energy harvester for broadband application , 2013 .

[243]  Adrien Badel,et al.  A new figure of merit for wideband vibration energy harvesters , 2015 .

[244]  Chengkuo Lee,et al.  A new energy harvester design for high power output at low frequencies , 2013 .

[245]  Yan Peng,et al.  Modeling and parametric study of a force-amplified compressive-mode piezoelectric energy harvester , 2017 .

[246]  Peter Woias,et al.  Characterization of different beam shapes for piezoelectric energy harvesting , 2008 .

[247]  Bertrand Boutaud,et al.  Micro Blood Pressure Energy Harvester for Intracardiac Pacemaker , 2014, Journal of Microelectromechanical Systems.

[248]  Hiroshi Toshiyoshi,et al.  Insole Pedometer With Piezoelectric Energy Harvester and 2 V Organic Circuits , 2013, IEEE Journal of Solid-State Circuits.

[249]  Xuezheng Jiang,et al.  Piezoelectric energy harvesting from traffic-induced pavement vibrations , 2014 .

[250]  Nan Yao,et al.  PMN-PT nanostructures for energy scavenging , 2017 .

[251]  Longhan Xie,et al.  Increased piezoelectric energy harvesting from human footstep motion by using an amplification mechanism , 2014 .

[252]  X. D. Xie,et al.  Design of a piezoelectric harvester fixed under the roof of a high-rise building , 2016 .

[253]  Kexiang Wei,et al.  A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach , 2017 .

[254]  Geon-Tae Hwang,et al.  Flexible Piezoelectric Thin‐Film Energy Harvesters and Nanosensors for Biomedical Applications , 2015, Advanced healthcare materials.

[255]  Wei Wang,et al.  Piezoelectric energy harvesting using shear mode 0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 single crystal cantilever , 2010 .

[256]  Suresh Bhalla,et al.  Combined Energy Harvesting and Structural Health Monitoring Potential of Embedded Piezo-Concrete Vibration Sensors , 2015 .

[257]  William W. Clark,et al.  Experimental validation of energy harvesting performance for pressure-loaded piezoelectric circular diaphragms , 2010 .

[258]  Weiwen Deng,et al.  Practical Design of an Energy Harvester Considering Wheel Rotation for Powering Intelligent Tire Systems , 2017, Journal of Electronic Materials.

[259]  Chieh-Min Wang,et al.  A Miniature Mechanical-Piezoelectric-Configured Three-Axis Vibrational Energy Harvester , 2015, IEEE Sensors Journal.

[260]  Jaeyun Lee,et al.  Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires , 2014 .

[261]  G. W. KIM,et al.  Piezoelectric energy harvesting from torsional vibration in internal combustion engines , 2015, International Journal of Automotive Technology.

[262]  Xue Feng,et al.  Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy , 2015, Scientific Reports.

[263]  Khalil Najafi,et al.  Harvesting traffic-induced vibrations for structural health monitoring of bridges , 2011 .

[264]  Mickaël Lallart,et al.  Recent Progress in Piezoelectric Conversion and Energy Harvesting Using Nonlinear Electronic Interfaces and Issues in Small Scale Implementation , 2011, Micromachines.

[265]  Daryl R. Kipke,et al.  Wireless implantable microsystems: high-density electronic interfaces to the nervous system , 2004, Proceedings of the IEEE.

[266]  Stewart Sherrit,et al.  Piezoelectric Energy Harvesting in Internal Fluid Flow , 2015, Sensors.

[267]  Dominique Siegert,et al.  Piezoelectric energy harvesting from traffic-induced bridge vibrations , 2013 .

[268]  Hiroki Kuwano,et al.  Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters [Correspondence] , 2015, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.

[269]  H. Gea,et al.  Topology optimization of energy harvesting devices using piezoelectric materials , 2009 .

[270]  Mingsen Guo,et al.  A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[271]  Di Lin,et al.  High performance of macro-flexible piezoelectric energy harvester using a 0.3PIN-0.4Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 flake array , 2016 .

[272]  Mohammed F. Daqaq,et al.  Influence of potential function asymmetries on the performance of nonlinear energy harvesters under white noise , 2014 .