Finitely generated free Heyting algebras via Birkhoff duality and coalgebra

Algebras axiomatized entirely by rank 1 axioms are algebras for a functor and thus the free algebras can be obtained by a direct limit process. Dually, the final coalgebras can be obtained by an inverse limit process. In order to explore the limits of this method we look at Heyting algebras which have mixed rank 0-1 axiomatizations. We will see that Heyting algebras are special in that they are almost rank 1 axiomatized and can be handled by a slight variant of the rank 1 coalgebraic methods.

[1]  Guram Bezhanishvili,et al.  Profinite Heyting Algebras , 2008, Order.

[2]  Marek W. Zawadowski,et al.  Sheaves, games, and model completions , 2002 .

[3]  Nick Bezhanishvili,et al.  Free Heyting Algebras: Revisited , 2009, CALCO.

[4]  Iwao Nishimura,et al.  On Formulas of One Variable in Intuitionistic Propositional Calculus , 1960, J. Symb. Log..

[5]  Dirk Pattinson,et al.  Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics , 2008, FoSSaCS.

[6]  Michael Zakharyaschev,et al.  Modal Logic , 1997, Oxford logic guides.

[7]  Dirk Pattinson,et al.  PSPACE Bounds for Rank-1 Modal Logics , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[8]  Silvio Ghilardi,et al.  An Algebraic Theory of Normal Forms , 1995, Ann. Pure Appl. Log..

[9]  Silvio Ghilardi,et al.  Continuity, freeness, and filtrations , 2010, J. Appl. Non Class. Logics.

[10]  Nick Bezhanishvili,et al.  Free Heyting Algebras , 2009, CALCO 2009.

[11]  Fabio Bellissima,et al.  Finitely generated free Heyting algebras , 1986, Journal of Symbolic Logic.

[12]  Nick Bezhanishvili,et al.  Lattices of intermediate and cylindric modal logics , 2006 .

[13]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[14]  Vladimir V. Rybakov,et al.  Rules of inference with parameters for intuitionistic logic , 1992, Journal of Symbolic Logic.

[15]  Alexander Kurz,et al.  The Goldblatt-Thomason Theorem for Coalgebras , 2007, CALCO.

[16]  Alexander Kurz,et al.  Coalgebraic modal logic of finite rank , 2005, Math. Struct. Comput. Sci..

[17]  Carsten Butz,et al.  Finitely Presented Heyting Algebras , 1998 .

[18]  Ladislav Rieger On the lattice theory of Brouwerian propositional logic , 1949 .

[19]  Brunella Gerla,et al.  Gödel algebras free over finite distributive lattices , 2008, Ann. Pure Appl. Log..

[20]  Samson Abramsky,et al.  A Cook's Tour of the Finitary Non-Well-Founded Sets , 2011, We Will Show Them!.

[21]  Mai Gehrke,et al.  Distributive Lattice-Structured Ontologies , 2009, CALCO.

[22]  Philip M. Whitman Splittings of a Lattice , 1943 .

[23]  Richard Spencer-Smith,et al.  Modal Logic , 2007 .

[24]  Yde Venema,et al.  Stone Coalgebras , 2004, CMCS.

[25]  Alessandra Palmigiano,et al.  A coalgebraic view on positive modal logic , 2004, Theor. Comput. Sci..

[26]  A. Nerode,et al.  Some Stone spaces and recursion theory , 1959 .

[27]  Peter Aczel,et al.  Algebras and Coalgebras , 2000, Algebraic and Coalgebraic Methods in the Mathematics of Program Construction.

[28]  Ramon Jansana,et al.  Bounded distributive lattices with strict implication , 2005, Math. Log. Q..

[29]  Alexander Kurz,et al.  Free Modal Algebras: A Coalgebraic Perspective , 2007, CALCO.