A passive, sun-pointing, millimeter-scale solar sail

Abstract Taking inspiration from the orbital dynamics of dust, we find that spacecraft length scaling is a means of enabling infinite-impulse orbits that require no feedback control. Our candidate spacecraft is a 25 μm thick, 1 cm square silicon chip equipped with signal transmitting circuitry. This design reduces the total mass to less than 7.5 mg and enables the spacecraft bus itself to serve as a solar sail with characteristic acceleration on the order of 0.1 mm/s2. It is passive in that it maneuvers with no closed-loop actuation of orbital or attitude states. The unforced dynamics that result from an insertion orbit and a launch-vehicle separation determine its subsequent state evolution. We have developed a system architecture that uses solar radiation torques to maintain a sun-pointing heading and can be fabricated with standard microfabrication processes. This architecture has potential applications in heliocentric, geocentric, and three-body orbits.

[1]  P. Millman Interplanetary dust , 2004, Naturwissenschaften.

[2]  M. Peck,et al.  A Millimeter-Scale Lorentz-Propelled Spacecraft , 2007 .

[3]  Colin R. McInnes,et al.  Passive Control of Displaced Solar Sail Orbits , 1998 .

[4]  F. Mignard Radiation pressure and dust particle dynamics , 1982 .

[5]  Mark V. Sykes,et al.  Cometary dust trails: I. Survey , 1992 .

[6]  P. Neudeck,et al.  High-temperature electronics - a role for wide bandgap semiconductors? , 2002, Proc. IEEE.

[7]  Orbital evolution of the dust streams released from comets , 1976 .

[8]  I I Shapiro,et al.  Effects of Solar Radiation Pressure on Earth Satellite Orbits , 1960, Science.

[9]  P. Musen,et al.  Perturbations in Perigee Height of Vanguard I. , 1960, Science.

[10]  E. Polyakhova,et al.  Planar heliocentric roto-translatory motion of a spacecraft with a solar sail of complex shape , 1995 .

[11]  Colin R. McInnes,et al.  Solar sail parking in restricted three-body systems , 1994 .

[12]  Ingrid Mann,et al.  Identification of β-meteoroids from measurements of the dust detector onboard the Ulysses spacecraft , 1999 .

[13]  M. Harwit Origins of the zodiacal dust cloud , 1963 .

[14]  L. M. Miller MEMS for space applications , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[15]  Hexi Baoyin,et al.  Passive Stability Design for Solar Sail on Displaced Orbits , 2007 .

[16]  K. Bean,et al.  Anisotropic etching of silicon , 1978, IEEE Transactions on Electron Devices.

[17]  J. W. Chamberlain Depletion of satellite atoms in a collisionless exosphere by radiation pressure , 1979 .

[18]  B. Ware,et al.  Red cell charge is not a function of cell age , 1977, Nature.

[19]  E. Gruen,et al.  Evidence of hyperbolic cosmic dust particles. , 1973 .

[20]  R. Walker,et al.  The tempel 2 dust trail , 1990 .

[21]  Christian M. Harris,et al.  Solar Torque Control By Using Thin -Film Directionally Sensitive Surfaces , 2008 .

[22]  Martin Sweeting,et al.  Satellite Miniaturization Techniques for Space Sensor Networks , 2009 .

[23]  Bong Wie,et al.  Solar Sail Attitude Control and Dynamics, Part 1 , 2004 .

[24]  D. Hunten,et al.  Preliminary analysis of cometary dust trails , 1986 .

[25]  Colin R. McInnes,et al.  Microsolar sails for Earth magnetotail monitoring , 2007 .

[26]  Mark J. Matney,et al.  Synthesis of Observations , 2001 .

[27]  J. Gosling COROTATING AND TRANSIENT SOLAR WIND FLOWS IN THREE DIMENSIONS , 1996 .

[28]  H. P. Robertson,et al.  Dynamical Effects of Radiation in the Solar System , 1937 .

[29]  K. Breuer,et al.  MEMS, microengineering and aerospace systems , 1999 .

[30]  Gyula Greschik,et al.  Solar Sail Scalability and a "Truly Scalable" Architecture: The Space Tow , 2007 .

[31]  S. Dermott,et al.  A circumsolar ring of asteroidal dust in resonant lock with the Earth , 1994, Nature.

[32]  Michiel Steyaert,et al.  A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors , 1997, IEEE J. Solid State Circuits.

[33]  Colin R. McInnes,et al.  Solar Sailing: Technology, Dynamics and Mission Applications , 1999 .

[34]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[35]  J. Nicklas,et al.  THEORETICAL AND PRACTICAL ASPECTS OF SOLAR PRESSURE ATTITUDE CONTROL FOR INTERPLANETARY SPACECRAFT , 1963 .

[36]  Douglas P. Hamilton,et al.  Circumplanetary Dust Dynamics: Effects of Solar Gravity, Radiation Pressure, Planetary Oblateness, and Electromagnetism , 1996 .

[37]  I I Shapiro,et al.  Perturbations of the Orbit of the Echo Balloon , 1960, Science.

[38]  C. Jack,et al.  Solar kites: Small solar sails with no moving parts , 1997 .

[39]  E. L. Wright,et al.  Observational confirmation of a circumsolar dust ring by the COBE satellite , 1995, Nature.

[40]  J. V. D. Ha,et al.  Orbital Perturbations and Control by Solar Radiation Forces , 1978 .

[41]  Siegfried Janson Micro/Nanotechnology for Micro/Nano/Picosatellites , 2003 .

[42]  S. Paddack,et al.  Rotational bursting of small celestial bodies: Effects of radiation pressure , 1969 .

[43]  R. Bryant A Comparison of Theory and Observation of the Echo I Satellite , 1961 .

[44]  Hexi Baoyin,et al.  Analysis of Displaced Solar Sail Orbits with Passive Control , 2008 .

[45]  D. Vokrouhlický,et al.  Solar radiation pressure on (99942) Apophis , 2011 .

[46]  Emery Reeves Spacecraft Design and Sizing , 1991 .

[47]  D. W. Schuerman,et al.  The restricted three-body problem including radiation pressure , 1980 .

[48]  Siegfried Janson Mass-producible silicon spacecraft for 21st century missions , 1999 .

[49]  Martin Sweeting,et al.  Very-Small-Satellite Design for Distributed Space Missions , 2007 .

[50]  R. B. Cohen,et al.  Digital MicroPropulsion , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).