Choosing a suitable method for the identification of replication origins in microbial genomes

As the replication of genomic DNA is arguably the most important task performed by a cell and given that it is controlled at the initiation stage, the events that occur at the replication origin play a central role in the cell cycle. Making sense of DNA replication origins is important for improving our capacity to study cellular processes and functions in the regulation of gene expression, genome integrity in much finer detail. Thus, clearly comprehending the positions and sequences of replication origins which are fundamental to chromosome organization and duplication is the first priority of all. In view of such important roles of replication origins, tremendous work has been aimed at identifying and testing the specificity of replication origins. A number of computational tools based on various skew types have been developed to predict replication origins. Using various in silico approaches such as Ori-Finder, and databases such as DoriC, researchers have predicted the locations of replication origins sites for thousands of bacterial chromosomes and archaeal genomes. Based on the predicted results, we should choose an effective method for identifying and confirming the interactions at origins of replication. Here we describe the main existing experimental methods that aimed to determine the replication origin regions and list some of the many the practical applications of these methods.

[1]  Patrick Forterre,et al.  Identification of short ‘eukaryotic’ Okazaki fragments synthesized from a prokaryotic replication origin , 2003, EMBO reports.

[2]  G. Griffiths,et al.  Characterization of ricin heterogeneity by electrospray mass spectrometry, capillary electrophoresis, and resonant mirror. , 2000, Analytical biochemistry.

[3]  M. Leffak,et al.  Activity of the c-myc Replicator at an Ectopic Chromosomal Location , 1999, Molecular and Cellular Biology.

[4]  R. Jones Principles and concepts , 2004 .

[5]  David M. Gilbert,et al.  Evaluating genome-scale approaches to eukaryotic DNA replication , 2010, Nature Reviews Genetics.

[6]  Ren Zhang,et al.  Multiple replication origins of the archaeon Halobacterium species NRC-1. , 2003, Biochemical and biophysical research communications.

[7]  M. Natan,et al.  Colloidal Au-enhanced surface plasmon resonance immunosensing. , 1998, Analytical chemistry.

[8]  R. Heinig,et al.  Capillary electrophoresis with laser-induced fluorescence: a routine method to determine moxifloxacin in human body fluids in very small sample volumes. , 1998, Journal of chromatography. B, Biomedical sciences and applications.

[9]  Hungwen Chen,et al.  Simultaneous immunoblotting analysis with activity gel electrophoresis in a single polyacrylamide gel , 2001, Electrophoresis.

[10]  Tania A Baker,et al.  Polymerases and the Replisome: Machines within Machines , 1998, Cell.

[11]  J. Huberman,et al.  Two-dimensional gel electrophoretic method for mapping DNA replicons , 1988, Molecular and cellular biology.

[12]  William C Reinhold,et al.  Genome-wide depletion of replication initiation events in highly transcribed regions. , 2011, Genome research.

[13]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[14]  Michael Snyder,et al.  ChIP-chip: a genomic approach for identifying transcription factor binding sites. , 2002, Methods in enzymology.

[15]  Shiladitya DasSarma,et al.  Multiple Replication Origins of Halobacterium sp. Strain NRC-1: Properties of the Conserved orc7-Dependent oriC1 , 2009, Journal of bacteriology.

[16]  Michael D. Wilson,et al.  ChIP-seq: using high-throughput sequencing to discover protein-DNA interactions. , 2009, Methods.

[17]  Rigoberto C. Advincula,et al.  Surface Plasmon Resonance (SPR) Detection of Theophylline via Electropolymerized Molecularly Imprinted Polythiophenes , 2010 .

[18]  G. Marczynski,et al.  Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus , 2004, Molecular microbiology.

[19]  Rolf Bernander,et al.  Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Dervan,et al.  Methidiumpropyl-EDTA.Fe(II) and DNase I footprinting report different small molecule binding site sizes on DNA. , 1983, Nucleic acids research.

[21]  Scott F. Hickey,et al.  Microfluidic screening of electrophoretic mobility shifts elucidates riboswitch binding function. , 2013, Journal of the American Chemical Society.

[22]  Kelly Karns,et al.  Microfluidic electrophoretic mobility shift assays for quantitative biochemical analysis , 2014, Electrophoresis.

[23]  Rolf Bernander,et al.  Four chromosome replication origins in the archaeon Pyrobaculum calidifontis , 2012, Molecular microbiology.

[24]  S. Bell,et al.  Replication termination and chromosome dimer resolution in the archaeon Sulfolobus solfataricus , 2010, The EMBO journal.

[25]  S. Yokoyama,et al.  A Common Mechanism for the ATP-DnaA-dependent Formation of Open Complexes at the Replication Origin* , 2008, Journal of Biological Chemistry.

[26]  Cheng Cheng,et al.  ChIP-PaM: an algorithm to identify protein-DNA interaction using ChIP-Seq data , 2010, Theoretical Biology and Medical Modelling.

[27]  T. Ogawa,et al.  Determination of the minimum domain II size of Escherichia coli DnaA protein essential for cell viability. , 2008, Microbiology.

[28]  S. Gerbi,et al.  Replication initiation point mapping. , 1997, Methods.

[29]  Feng Gao,et al.  DeOri: a database of eukaryotic DNA replication origins , 2012, Bioinform..

[30]  Joseph Wang Nanomaterial-based amplified transduction of biomolecular interactions. , 2005, Small.

[31]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[32]  Cheulhee Jung,et al.  A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. , 2010, Biosensors & bioelectronics.

[33]  R. W. Davis,et al.  High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. Komori,et al.  Replication Protein A in Pyrococcus furiosus Is Involved in Homologous DNA Recombination* , 2001, The Journal of Biological Chemistry.

[35]  S. Akilesh,et al.  Isothermal titration calorimetry measurements of Ni(II) and Cu(II) binding to His, GlyGlyHis, HisGlyHis, and bovine serum albumin: a critical evaluation. , 2000, Inorganic chemistry.

[36]  C. Speck,et al.  Identification of the chromosomal replication origin from Thermus thermophilus and its interaction with the replication initiator DnaA. , 2000, Journal of molecular biology.

[37]  X. D. Hoa,et al.  Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress. , 2007, Biosensors & bioelectronics.

[38]  T. Katayama,et al.  Highly organized DnaA–oriC complexes recruit the single-stranded DNA for replication initiation , 2011, Nucleic acids research.

[39]  J. Zakrzewska‐Czerwińska,et al.  DNA binding specificity of the replication initiator protein, DnaA from Helicobacter pylori. , 2003, Journal of molecular biology.

[40]  S. Humphries,et al.  Characterization of DNA-binding proteins using multiplexed competitor EMSA. , 2009, Journal of molecular biology.

[41]  J. Falgueyret,et al.  Assessing protein-RNA interactions using microfluidic capillary mobility shift assays. , 2011, Analytical biochemistry.

[42]  S. Bell,et al.  Conserved nucleosome positioning defines replication origins. , 2010, Genes & development.

[43]  Yi Liu,et al.  Archaeal eukaryote-like Orc1/Cdc6 initiators physically interact with DNA polymerase B1 and regulate its functions , 2009, Proceedings of the National Academy of Sciences.

[44]  M. Sutton,et al.  Novel alleles of the Escherichia coli dnaA gene. , 1997, Journal of molecular biology.

[45]  Evelyn Susanto,et al.  A Proteomics Approach for the Identification of DNA Binding Activities Observed in the Electrophoretic Mobility Shift Assay* , 2002, Molecular & Cellular Proteomics.

[46]  R. Ohki,et al.  Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) , 2013, Scientific Reports.

[47]  M. Waring,et al.  The use of micrococcal nuclease as a probe for drug-binding sites on DNA. , 1987, Biochimica et biophysica acta.

[48]  R. Batey,et al.  Monitoring RNA-ligand interactions using isothermal titration calorimetry. , 2009, Methods in molecular biology.

[49]  Feng Gao,et al.  DoriC 5.0: an updated database of oriC regions in both bacterial and archaeal genomes , 2012, Nucleic Acids Res..

[50]  Stephen D. Bell,et al.  DNA Replication in the Archaea , 2006, Microbiology and Molecular Biology Reviews.

[51]  T. Katayama Roles for the AAA+ motifs of DnaA in the initiation of DNA replication. , 2008, Biochemical Society transactions.

[52]  H. Xiang,et al.  Molecular Characterization of the Minimal Replicon and the Unidirectional Theta Replication of pSCM201 in Extremely Halophilic Archaea , 2006, Journal of bacteriology.

[53]  G. Holdgate,et al.  Isothermal titration calorimetry in drug discovery. , 2001, Progress in medicinal chemistry.

[54]  E. Lewis,et al.  Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. , 2008, Methods in cell biology.

[55]  J. Huberman Genetic methods for characterizing the cis-acting components of yeast DNA replication origins. , 1999, Methods.

[56]  Fiona C. Robertson,et al.  Highly reproducible ChIP-on-chip analysis to identify genome-wide protein binding and chromatin status in Arabidopsis thaliana. , 2014, Methods in molecular biology.

[57]  Interaction of the IciA protein with AT-rich regions in plasmid replication origins. , 1996, Nucleic acids research.

[58]  T. Katayama,et al.  Structure and Function of DnaA N-terminal Domains , 2007, Journal of Biological Chemistry.

[59]  Feng Gao,et al.  Ori-Finder 2, an integrated tool to predict replication origins in the archaeal genomes , 2014, Front. Microbiol..

[60]  B. Liedberg,et al.  Biosensing with surface plasmon resonance--how it all started. , 1995, Biosensors & bioelectronics.

[61]  G. de Murcia,et al.  Specific protein-DNA complexes: immunodetection of the protein component after gel electrophoresis and Western blotting. , 1988, Analytical biochemistry.

[62]  P. Forterre,et al.  Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp. , 2007, Nucleic acids research.

[63]  E. Crooke,et al.  DnaA, the Initiator of Escherichia coliChromosomal Replication, Is Located at the Cell Membrane , 2000, Journal of bacteriology.

[64]  S. Moriya,et al.  Autoregulation of the dnaA-dnaNOperon and Effects of DnaA Protein Levels on Replication Initiation inBacillus subtilis , 2001, Journal of bacteriology.

[65]  S. Aves,et al.  Origins and complexes: the initiation of DNA replication. , 2001, Journal of experimental botany.

[66]  M. Fried Measurement of protein‐DNA interaction parameters by electrophoresis mobility shift assay , 1989, Electrophoresis.

[67]  Hoyun Lee,et al.  Origin of DNA replication at the human lamin B2 locus , 2012, Cell cycle.

[68]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[69]  C. Crane-Robinson,et al.  Defining the thermodynamics of protein/DNA complexes and their components using micro-calorimetry. , 2009, Methods in molecular biology.

[70]  Randhir Singh,et al.  Introductory Practical Biochemistry , 2005 .

[71]  M. Merighi,et al.  Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. , 2006, Journal of biomolecular techniques : JBT.

[72]  Wayne F. Patton,et al.  A sensitive two‐color electrophoretic mobility shift assay for detecting both nucleic acids and protein in gels , 2003, Proteomics.

[73]  A. Mitrevej,et al.  Characterization of drug-chitosan interaction by 1H NMR, FTIR and isothermal titration calorimetry. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[74]  W. Messer,et al.  The N‐terminus promotes oligomerization of the Escherichia coli initiator protein DnaA , 1999, Molecular microbiology.

[75]  Feng Gao,et al.  Recent Advances in the Identification of Replication Origins Based on the Z-curve Method , 2014, Current genomics.

[76]  P. Burgers,et al.  DNA Polymerases that Propagate the Eukaryotic DNA Replication Fork , 2005, Critical reviews in biochemistry and molecular biology.

[77]  C. Speck,et al.  Mechanism of origin unwinding: sequential binding of DnaA to double‐ and single‐stranded DNA , 2001, The EMBO journal.

[78]  W. Messer,et al.  High‐affinity binding sites for the initiator protein DnaA on the chromosome of Escherichia coli , 1998, Molecular microbiology.

[79]  Z. Kelman,et al.  DNA polymerase III holoenzyme: structure and function of a chromosomal replicating machine. , 1995, Annual review of biochemistry.

[80]  Ronald W. Davis,et al.  Replication dynamics of the yeast genome. , 2001, Science.

[81]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[82]  M. Marra,et al.  Applications of next-generation sequencing technologies in functional genomics. , 2008, Genomics.

[83]  J. Zakrzewska‐Czerwińska,et al.  oriC-encoded instructions for the initiation of bacterial chromosome replication , 2014, Front. Microbiol..

[84]  E. Koonin,et al.  GINS, a central nexus in the archaeal DNA replication fork , 2006, EMBO reports.

[85]  Ying Liu,et al.  Highly sensitive detection of protein toxins by surface plasmon resonance with biotinylation-based inline atom transfer radical polymerization amplification. , 2010, Analytical chemistry.

[86]  A. Velázquez‐Campoy,et al.  Isothermal Titration Calorimetry , 2004, Current protocols in cell biology.

[87]  John J. Wyrick,et al.  Genome-wide location and function of DNA binding proteins. , 2000, Science.

[88]  J. Zakrzewska‐Czerwińska,et al.  Helicobacter pylori oriC—the first bipartite origin of chromosome replication in Gram-negative bacteria , 2012, Nucleic acids research.

[89]  S. Ishikawa,et al.  High-Resolution Mapping of In vivo Genomic Transcription Factor Binding Sites Using In situ DNase I Footprinting and ChIP-seq , 2013, DNA research : an international journal for rapid publication of reports on genes and genomes.

[90]  P. Forterre,et al.  In vivo interactions of archaeal Cdc6/Orc1 and minichromosome maintenance proteins with the replication origin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  O. Nureki,et al.  Structural basis of replication origin recognition by the DnaA protein. , 2003, Nucleic acids research.

[92]  E. Rampakakis,et al.  Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation , 2010, Nucleic acids research.

[93]  W. Messer The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. , 2002, FEMS microbiology reviews.

[94]  Shiladitya DasSarma,et al.  An Archaeal Chromosomal Autonomously Replicating Sequence Element from an Extreme Halophile, Halobacterium sp. Strain NRC-1 , 2003, Journal of bacteriology.

[95]  S. Bell,et al.  Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius , 2008, Proceedings of the National Academy of Sciences.

[96]  J. Nix,et al.  Structural basis of the transcriptional regulation of the proline utilization regulon by multifunctional PutA. , 2008, Journal of molecular biology.

[97]  S. Aves DNA replication initiation. , 2009, Methods in molecular biology.

[98]  T. Katayama,et al.  DnaA, ORC, and Cdc6: similarity beyond the domains of life and diversity. , 2010, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[99]  T. Okazaki,et al.  A novel DnaA protein‐binding site at 94.7 min on the Escherichia coli chromosome , 1996, Molecular microbiology.

[100]  B. Collins,et al.  Survey of the year 2009: applications of isothermal titration calorimetry , 2011, Journal of molecular recognition : JMR.

[101]  D. Chakravarti,et al.  Chromatin immunoprecipitation: advancing analysis of nuclear hormone signaling. , 2012, Journal of molecular endocrinology.

[102]  B. Sigurskjold,et al.  Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. , 2000, Analytical biochemistry.

[103]  Priyabrata Pattnaik,et al.  Surface plasmon resonance , 2005, Applied biochemistry and biotechnology.

[104]  T. Katayama,et al.  DnaA structure, function, and dynamics in the initiation at the chromosomal origin. , 2009, Plasmid.

[105]  A. Mortazavi,et al.  Genome-Wide Mapping of in Vivo Protein-DNA Interactions , 2007, Science.

[106]  A. Grigoriev,et al.  Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus , 2004, Extremophiles.

[107]  I. Jelesarov,et al.  Survey of the year 2008: applications of isothermal titration calorimetry , 2010, Journal of molecular recognition : JMR.

[108]  P. Selvin Fluorescence resonance energy transfer. , 1995, Methods in enzymology.

[109]  D. Helinski,et al.  A multifunctional plasmid-encoded replication initiation protein both recruits and positions an active helicase at the replication origin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[110]  P. Richardson,et al.  An improved method for the in vitro evolution of aptamers and applications in protein detection and purification. , 2003, Nucleic acids research.

[111]  P. V. D. Merwe Surface plasmon resonance , 2002 .

[112]  N. Kaji,et al.  Rapid qualitative evaluation of DNA transcription factor NF‐κB by microchip electrophoretic mobility shift assay in mammalian cells , 2011, Electrophoresis.

[113]  C S Raman,et al.  Isothermal titration calorimetry of protein-protein interactions. , 1999, Methods.

[114]  M. Chandler,et al.  Use of gel retardation to analyze protein-nucleic acid interactions. , 1992, Microbiological reviews.

[115]  D G Myszka,et al.  Current and emerging commercial optical biosensors , 2001, Journal of molecular recognition : JMR.

[116]  Pearlly Yan,et al.  Chromatin Immunoprecipitation (ChIP) on Chip Experiments Uncover a Widespread Distribution of NF-Y Binding CCAAT Sites Outside of Core Promoters* , 2005, Journal of Biological Chemistry.

[117]  S. Yokoyama,et al.  The interaction of DiaA and DnaA regulates the replication cycle in E. coli by directly promoting ATP DnaA-specific initiation complexes. , 2007, Genes & development.

[118]  Rolf Bernander,et al.  Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus , 2004, Cell.

[119]  K. Skarstad,et al.  Regulating DNA replication in bacteria. , 2013, Cold Spring Harbor perspectives in biology.

[120]  James A. Taylor,et al.  The Caulobacter crescentus chromosome replication origin evolved two classes of weak DnaA binding sites , 2011, Molecular microbiology.

[121]  A. Lépingle,et al.  Short DNA fragments without sequence similarity are initiation sites for replication in the chromosome of the yeast Yarrowia lipolytica. , 1999, Molecular biology of the cell.

[122]  Andrew B Nobel,et al.  ChIPOTle: a user-friendly tool for the analysis of ChIP-chip data , 2005, Genome biology.

[123]  Scott M Reed,et al.  Direct visualization of electrophoretic mobility shift assays using nanoparticle–aptamer conjugates , 2012, Electrophoresis.

[124]  Anjali G Shah Chromatin immunoprecipitation sequencing (ChIP-Seq) on the SOLiDTM system , 2009 .

[125]  H. Xiang,et al.  Replication initiator DnaA interacts with an anti-terminator NusG in T. tengcongensis. , 2008, Biochemical and biophysical research communications.

[126]  L. Hellman,et al.  Electrophoretic mobility shift assay (EMSA) for detecting protein–nucleic acid interactions , 2007, Nature Protocols.

[127]  A. Velázquez‐Campoy,et al.  Isothermal titration calorimetry to determine association constants for high-affinity ligands , 2006, Nature Protocols.

[128]  R. Bernander,et al.  Chromosome replication origins: Do we really need them? , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[129]  J. Lieb,et al.  ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. , 2004, Genomics.

[130]  Arthur Kornberg,et al.  The dnaA protein complex with the E. coli chromosomal replication origin (oriC) and other DNA sites , 1984, Cell.

[131]  V. Orlando,et al.  Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. , 2000, Trends in biochemical sciences.

[132]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[133]  A. Truax,et al.  ChIP and Re-ChIP assays: investigating interactions between regulatory proteins, histone modifications, and the DNA sequences to which they bind. , 2012, Methods in molecular biology.

[134]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[135]  R. Bernander,et al.  Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii , 2002, Molecular microbiology.

[136]  S. Forsburg,et al.  Regulation of DNA replication , 2003 .

[137]  Anindya Dutta,et al.  DNA replication in eukaryotic cells. , 2002, Annual review of biochemistry.

[138]  Ren Zhang,et al.  Identification of replication origins in archaeal genomes based on the Z-curve method. , 2005, Archaea.

[139]  W. Messer,et al.  Genetic structure of the dnaA region of the cyanobacterium Synechocystis sp. strain PCC6803 , 1995, Journal of bacteriology.

[140]  Christian Kleinewächter,et al.  On identification , 2005, Electron. Notes Discret. Math..

[141]  P. Molloy,et al.  Electrophoretic mobility shift assays , 2005, Nature Methods.

[142]  François Jacob,et al.  On the Regulation of DNA Replication in Bacteria , 1963 .

[143]  B. Stillman,et al.  The DNA replication fork in eukaryotic cells. , 1998, Annual review of biochemistry.

[144]  W. Messer,et al.  The DNA binding domain of the initiator protein DnaA. , 1995, The EMBO journal.

[145]  I. Rouzina,et al.  Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism. , 2000, Journal of molecular biology.

[146]  J. Kaguni,et al.  The Box VII Motif of Escherichia coli DnaA Protein Is Required for DnaA Oligomerization at the E. coli Replication Origin* , 2004, Journal of Biological Chemistry.

[147]  J. Memelink Electrophoretic mobility shift assay for the analysis of interactions of jasmonic acid-responsive transcription factors with DNA. , 2013, Methods in molecular biology.

[148]  K. J. McDowall,et al.  The Identification of Nucleic Acid-interacting Proteins Using a Simple Proteomics-based Approach That Directly Incorporates the Electrophoretic Mobility Shift Assay * , 2006, Molecular & Cellular Proteomics.

[149]  Feng Gao,et al.  DoriC: a database of oriC regions in bacterial genomes , 2007, Bioinform..

[150]  Raj Kumar,et al.  A versatile method to measure the binding to basic proteins by surface plasmon resonance. , 2012, Analytical biochemistry.

[151]  Matthew A. Cooper,et al.  Optical biosensors in drug discovery , 2002, Nature Reviews Drug Discovery.

[152]  H. Xiang,et al.  Multiple replication origins with diverse control mechanisms in Haloarcula hispanica , 2013, Nucleic acids research.

[153]  Our Microbiology Correspondent Chromosome Replication , 1968, Nature.

[154]  Jiří Homola,et al.  Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. , 2014, Analytical chemistry.

[155]  T. Moss,et al.  DNase I footprinting. , 2020, Methods in molecular biology.

[156]  C. Cunha,et al.  Electrophoretic Mobility Shift Assay: Analyzing Protein - Nucleic Acid Interactions , 2012 .

[157]  M. O’Donnell,et al.  Cellular DNA replicases: components and dynamics at the replication fork. , 2005, Annual review of biochemistry.

[158]  Peter V Kharchenko,et al.  Chromatin signatures of the Drosophila replication program. , 2011, Genome research.

[159]  A. Hoshino,et al.  Insertional chromatin immunoprecipitation: a method for isolating specific genomic regions. , 2009, Journal of bioscience and bioengineering.

[160]  A. Kornberg,et al.  The dnaA protein of Escherichia coli. Abundance, improved purification, and membrane binding. , 1988, The Journal of biological chemistry.

[161]  Z. Dong,et al.  Major DNA replication initiation sites in the c‐myc locus in human cells , 2000, Journal of cellular biochemistry.

[162]  T. Moss,et al.  DNase I footprinting. , 1994, Methods in molecular biology.

[163]  Jean-Francois Masson,et al.  Advances in surface plasmon resonance sensing with nanoparticles and thin films: nanomaterials, surface chemistry, and hybrid plasmonic techniques. , 2011, Analytical chemistry.

[164]  Shaoyi Jiang,et al.  irect detection of carcinoembryonic antigen autoantibodies in clinical human erum samples using a surface plasmon resonance sensor on Ladda , 2009 .

[165]  D. Stahl,et al.  Mapping of active replication origins in vivo in thaum‐ and euryarchaeal replicons , 2013, Molecular microbiology.

[166]  Jonathan A Eisen,et al.  Genetic and Physical Mapping of DNA Replication Origins in Haloferax volcanii , 2007, PLoS genetics.

[167]  B. Bernstein,et al.  Genome-wide analysis of histone modifications by ChIP-on-chip. , 2006, Methods.

[168]  J. Berger,et al.  The Bacterial DnaC Helicase Loader Is a DnaB Ring Breaker , 2013, Cell.

[169]  Maryam Tabrizian,et al.  Noncovalently functionalized monolayer graphene for sensitivity enhancement of surface plasmon resonance immunosensors. , 2015, Journal of the American Chemical Society.

[170]  K. Węgrzyn,et al.  Sequence-specific interactions of Rep proteins with ssDNA in the AT-rich region of the plasmid replication origin , 2014, Nucleic acids research.

[171]  Craig L Peterson,et al.  Experimental strategies for the identification of DNA-binding proteins. , 2012, Cold Spring Harbor protocols.

[172]  W. Messer,et al.  Analysis of the DNA‐binding domain of Escherichia coli DnaA protein , 2000, Molecular microbiology.

[173]  C. Peterson,et al.  Chromatin immunoprecipitation (ChIP). , 2009, Cold Spring Harbor protocols.

[174]  Vibha Rani,et al.  DNA–protein interactions: methods for detection and analysis , 2012, Molecular and Cellular Biochemistry.

[175]  B. Stillman,et al.  Principles and concepts of DNA replication in bacteria, archaea, and eukarya. , 2013, Cold Spring Harbor perspectives in biology.

[176]  S Howell,et al.  High-throughput screening in the diagnostics industry. , 2002, Biochemical Society transactions.

[177]  Yi Wang,et al.  Bacterial pathogen surface plasmon resonance biosensor advanced by long range surface plasmons and magnetic nanoparticle assays. , 2012, Analytical chemistry.

[178]  N R Cozzarelli,et al.  Analysis of topoisomerase function in bacterial replication fork movement: use of DNA microarrays. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[179]  D. Helinski,et al.  Interactions of DnaA Proteins from Distantly Related Bacteria with the Replication Origin of the Broad Host Range Plasmid RK2* , 2000, The Journal of Biological Chemistry.

[180]  J. Zakrzewska‐Czerwińska,et al.  Bacterial replication initiator DnaA. Rules for DnaA binding and roles of DnaA in origin unwinding and helicase loading. , 2001, Biochimie.

[181]  A. Kornberg,et al.  The dnaB-dnaC replication protein complex of Escherichia coli. I. Formation and properties. , 1989, The Journal of biological chemistry.

[182]  H Philippe,et al.  Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. , 2000, Science.

[183]  A. Kozlov,et al.  SSB binding to ssDNA using isothermal titration calorimetry. , 2012, Methods in molecular biology.

[184]  S. Gerbi,et al.  Discrete start sites for DNA synthesis in the yeast ARS1 origin. , 1998, Science.

[185]  S. Bell,et al.  Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes , 2007, Proceedings of the National Academy of Sciences.

[186]  Jose C. Martínez,et al.  Isothermal Titration Calorimetry: Thermodynamic Analysis of the Binding Thermograms of Molecular Recognition Events by Using Equilibrium Models , 2013 .

[187]  H. Xiang,et al.  Mechanism for the TtDnaA–Tt-oriC cooperative interaction at high temperature and duplex opening at an unusual AT-rich region in Thermoanaerobacter tengcongensis , 2007, Nucleic acids research.

[188]  G. Chu,et al.  Electrophoretic mobility shift assays for protein-DNA complexes involved in DNA repair. , 2012, Methods in molecular biology.

[189]  A. Velázquez‐Campoy,et al.  Characterization of protein-protein interactions by isothermal titration calorimetry. , 2004, Methods in molecular biology.

[190]  J. Shin,et al.  FRep: a fluorescent protein-based bioprobe for in vivo detection of protein-DNA interactions. , 2011, Analytical chemistry.

[191]  David C. Grainger,et al.  Chromosomal Macrodomains and Associated Proteins: Implications for DNA Organization and Replication in Gram Negative Bacteria , 2011, PLoS genetics.