Biosynthesis of arachidonic acid in the oleaginous microalga Parietochloris incisa (Chlorophyceae): Radiolabeling studies

[1]  Waldemar Eichenberger,et al.  Lipids of Pavlova lutheri: Cellular site and metabolic role of DGCC , 1997 .

[2]  C. Bigogno,et al.  Elucidation of the Biosynthesis of Eicosapentaenoic Acid (EPA) in the Microalga Porphyridium Cruentum , 1997 .

[3]  Z. Cohen,et al.  Differential response of microalgae to the substituted pyridazinone, sandoz 9785, reveal different pathways in the biosynthesis of eicosapentaenoic acid , 1996 .

[4]  A. Richmond,et al.  Parietochloris incisa comb. nov. (Trebouxiophyceae, Chlorophyta) , 1996 .

[5]  J. Ohlrogge,et al.  Lipid biosynthesis. , 1995, The Plant cell.

[6]  R. Gibson,et al.  Are long-chain polyunsaturated fatty acids essential nutrients in infancy? , 1995, The Lancet.

[7]  R. Bellù,et al.  Effects of diet on the lipid and fatty acid status of full-term infants at 4 months. , 1994, Journal of the American College of Nutrition.

[8]  P. Roessler,et al.  RADIOLABELING STUDIES OF LIPIDS AND FATTY ACIDS IN NANNOCHLOROPSIS (EUSTIGMATOPHYCEAE), AN OLEAGINOUS MARINE ALGA 1 , 1994 .

[9]  M. Yamada,et al.  Biosynthesis of polyunsaturated lipids in the diatom, Phaeodactylum tricornutum , 1994 .

[10]  M. Yamada,et al.  BIOSYNTHESIS OF POLYUNSATURATED FATTY ACIDS IN THE MARINE DIATOM, PHAEODACTYLUM TRICORNUTUM , 1994 .

[11]  S. Carlson,et al.  Arachidonic acid status correlates with first year growth in preterm infants. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  E. Heinz,et al.  Biosynthesis of Polyunsaturated Fatty Acids , 1993 .

[13]  G. Vogel,et al.  Betaine Lipids in Lower Plants. Biosynthesis of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the Possible Role of DGTS in Lipid Metabolism , 1992 .

[14]  J. Browse,et al.  Glycerolipid Synthesis: Biochemistry and Regulation , 1991 .

[15]  B. Koletzko,et al.  Arachidonic acid and early human growth: is there a relation? , 1991, Annals of nutrition & metabolism.

[16]  G. Anderson,et al.  Placental transfer of essential fatty acids in humans: venous-arterial difference for docosahexaenoic acid in fetal umbilical erythrocytes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. Giroud,et al.  Lipids of Chlamydomonas reinhardtii. Incorporation of [14C]Acetate, [14C]Palmitate and [14C]Oleate into Different Lipids and Evidence for Lipid-Linked Desaturation of Fatty Acids , 1989 .

[18]  J. Sargent,et al.  Lipid composition and biosynthesis in ageing cultures of the marine cryptomonad, Chroomonas salina , 1989 .

[19]  Peter Pohl,et al.  Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes☆ , 1984 .

[20]  S. Carlson,et al.  The effect of variations in dietary fatty acids on the fatty acid composition of erythrocyte phosphatidylcholine and phosphatidylethanolamine in human infants. , 1982, The American journal of clinical nutrition.

[21]  R. Borch Separation of long chain fatty acids as phenacyl esters by high pressure liquid chromatography. , 1975, Analytical chemistry.

[22]  G. Cohen-bazire,et al.  Purification and properties of unicellular blue-green algae (order Chroococcales). , 1971, Bacteriological reviews.

[23]  R. Safford,et al.  Positional distribution of fatty acids in monogalactosyl diglyceride fractions from leaves and algae. Structural and metabolic studies. , 1970, Biochimica et biophysica acta.

[24]  R. Appleby,et al.  The distribution and biosynthesis of arachidonic acid in algae , 1969 .

[25]  A. I. Rachlin,et al.  Synthesis of Arachidonic Acid , 1961 .