Unified one‐fluid formulation for incompressible flexible solids and multiphase flows: Application to hydrodynamics using the immersed structural potential method (ISPM)

In this paper, we present a two‐dimensional computational framework for the simulation of fluid‐structure interaction problems involving incompressible flexible solids and multiphase flows, further extending the application range of classical immersed computational approaches to the context of hydrodynamics. The proposed method aims to overcome shortcomings such as the restriction of having to deal with similar density ratios among different phases or the restriction to solve single‐phase flows. First, a variation of classical immersed techniques, pioneered with the immersed boundary method (IBM), is presented by rearranging the governing equations, which define the behaviour of the multiple physics involved. The formulation is compatible with the “one‐fluid” formulation for two‐phase flows and can deal with large density ratios with the help of an anisotropic Poisson solver. Second, immersed deformable structures and fluid phases are modelled in an identical manner except for the computation of the deviatoric stresses. The numerical technique followed in this paper builds upon the immersed structural potential method developed by the authors, by adding a level set–based method for the capturing of the fluid‐fluid interfaces and an interface Lagrangian‐based meshless technique for the tracking of the fluid‐structure interface. The spatial discretisation is based on the standard marker‐and‐cell method used in conjunction with a fractional step approach for the pressure/velocity decoupling, a second‐order time integrator, and a fixed‐point iterative scheme. The paper presents a wide d range of two‐dimensional applications involving multiphase flows interacting with immersed deformable solids, including benchmarking against both experimental and alternative numerical schemes.

[1]  Santiago Badia,et al.  A pseudo-compressible variational multiscale solver for turbulent incompressible flows , 2016 .

[2]  Antonio J. Gil,et al.  Nonlinear Solid Mechanics for Finite Element Analysis: Statics , 2016 .

[3]  Rogelio Ortigosa,et al.  A new framework for large strain electromechanics based on convex multi-variable strain energies: Variational formulation and material characterisation , 2016 .

[4]  Miguel A. Fernández,et al.  Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures , 2016 .

[5]  Rogelio Ortigosa,et al.  A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity , 2016 .

[6]  Rogelio Ortigosa,et al.  A computational framework for polyconvex large strain elasticity for geometrically exact beam theory , 2015, Computational Mechanics.

[7]  Shi-Min Hu,et al.  Multiple-Fluid SPH Simulation Using a Mixture Model , 2014, ACM Trans. Graph..

[8]  E. Burman,et al.  An unfitted Nitsche method for incompressible fluid–structure interaction using overlapping meshes , 2014 .

[9]  Antonio J. Gil,et al.  A two-step Taylor-Galerkin formulation for fast dynamics , 2014 .

[10]  A. J. Gil,et al.  An immersed structural potential method for incompressible flexible/rigid/multi-phase flow interaction , 2014 .

[11]  Antonio J. Gil,et al.  An enhanced Immersed Structural Potential Method for fluid-structure interaction , 2013, J. Comput. Phys..

[12]  Antonio J. Gil,et al.  Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics , 2013 .

[13]  Dharshi Devendran,et al.  An immersed boundary energy-based method for incompressible viscoelasticity , 2012, J. Comput. Phys..

[14]  Sookkyung Lim,et al.  Fluid-mechanical interaction of flexible bacterial flagella by the immersed boundary method. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Oubay Hassan,et al.  Partitioned block-Gauss-Seidel coupling for dynamic fluid-structure interaction , 2010 .

[16]  Antonio J. Gil,et al.  The Immersed Structural Potential Method for haemodynamic applications , 2010, J. Comput. Phys..

[17]  Hermann G. Matthies,et al.  Partitioned solution to fluid–structure interaction problem in application to free-surface flows , 2010 .

[18]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[19]  Makoto Sueyoshi,et al.  Numerical simulation and experiment on dam break problem , 2010 .

[20]  Roger Alexander Falconer,et al.  Modelling dam-break flows over mobile beds using a 2D coupled approach , 2010 .

[21]  D. Kuzmin,et al.  Quantitative benchmark computations of two‐dimensional bubble dynamics , 2009 .

[22]  Krish Thiagarajan,et al.  An SPH projection method for simulating fluid-hypoelastic structure interaction , 2009 .

[23]  Tony W. H. Sheu,et al.  Development of a dispersively accurate conservative level set scheme for capturing interface in two-phase flows , 2009, J. Comput. Phys..

[24]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[25]  Fabio Nobile,et al.  Fluid-structure partitioned procedures based on Robin transmission conditions , 2008, J. Comput. Phys..

[26]  Charles S. Peskin,et al.  Numerical study of incompressible fluid dynamics with nonuniform density by the immersed boundary method , 2008 .

[27]  L. Heltai,et al.  On the hyper-elastic formulation of the immersed boundary method , 2008 .

[28]  Annalisa Quaini,et al.  Splitting Methods Based on Algebraic Factorization for Fluid-Structure Interaction , 2008, SIAM J. Sci. Comput..

[29]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[30]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[31]  Hong Zhao,et al.  A fixed-mesh method for incompressible flow-structure systems with finite solid deformations , 2008, J. Comput. Phys..

[32]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[33]  Boyce E. Griffith,et al.  An adaptive, formally second order accurate version of the immersed boundary method , 2007, J. Comput. Phys..

[34]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[35]  David Farrell,et al.  Immersed finite element method and its applications to biological systems. , 2006, Computer methods in applied mechanics and engineering.

[36]  Dieter Dinkler,et al.  Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .

[37]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[38]  Deborah Sulsky,et al.  Implicit dynamics in the material-point method , 2004 .

[39]  Wing Kam Liu,et al.  Extended immersed boundary method using FEM and RKPM , 2004 .

[40]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[41]  Yong Zhao,et al.  A high-resolution characteristics-based implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids , 2002 .

[42]  Robert D. Falgout,et al.  hypre: A Library of High Performance Preconditioners , 2002, International Conference on Computational Science.

[43]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[44]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[45]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian formulation for fluid–rigid body interaction , 2001 .

[46]  J. Brackbill,et al.  The material-point method for granular materials , 2000 .

[47]  Stéphane Popinet,et al.  A front-tracking algorithm for accurate representation of surface tension , 1999 .

[48]  Richard H. Pletcher,et al.  The Development of a Free Surface Capturing Approach for Multidimensional Free Surface Flows in Closed Containers , 1997 .

[49]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[50]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[52]  S. Zaleski,et al.  Modelling Merging and Fragmentation in Multiphase Flows with SURFER , 1994 .

[53]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[54]  G. Tryggvason,et al.  A front-tracking method for viscous, incompressible, multi-fluid flows , 1992 .

[55]  J. Zhu A low-diffusive and oscillation-free convection scheme , 1991 .

[56]  B. P. Leonard,et al.  A stable and accurate convective modelling procedure based on quadratic upstream interpolation , 1990 .

[57]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. II. contractile fibers , 1989 .

[58]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[59]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[60]  P. Gaskell,et al.  Curvature‐compensated convective transport: SMART, A new boundedness‐ preserving transport algorithm , 1988 .

[61]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[62]  Charles S. Peskin,et al.  Modeling prosthetic heart valves for numerical analysis of blood flow in the heart , 1980 .

[63]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[64]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[65]  C. K. Thornhill,et al.  Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[66]  A. J. Gil,et al.  A first‐order hyperbolic framework for large strain computational solid dynamics: An upwind cell centred Total Lagrangian scheme , 2017 .

[67]  Eugenio Oñate,et al.  Unified Lagrangian formulation for solid and fluid mechanics and FSI problems , 2016 .

[68]  A. J. Gil,et al.  AN IMMERSED STRUCTURAL POTENTIAL METHOD FRAMEWORK FOR INCOMPRESSIBLE FLEXIBLE/RIGID/MULTI-PHASE FLOW INTERACTION , 2016 .

[69]  Nicole Propst,et al.  Mathematical Foundations Of Elasticity , 2016 .

[70]  Rogelio Ortigosa,et al.  A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity , 2015 .

[71]  Yanghong Liang An immersed computational framework for multiphase fluid-structure interaction. , 2015 .

[72]  Peter Betsch,et al.  A mortar approach for Fluid–Structure interaction problems: Immersed strategies for deformable and rigid bodies , 2014 .

[73]  Antonio J. Gil,et al.  A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics , 2014 .

[74]  Charles S. Peskin,et al.  Numerical simulations of three-dimensional foam by the immersed boundary method , 2014, J. Comput. Phys..

[75]  Antonio J. Gil,et al.  Development of a stabilised Petrov–Galerkin formulation for conservation laws in Lagrangian fast solid dynamics , 2014 .

[76]  Antonio J. Gil,et al.  On continuum immersed strategies for Fluid-Structure Interaction , 2012 .

[77]  S. Balachandar,et al.  Turbulent Dispersed Multiphase Flow , 2010 .

[78]  S. Turek,et al.  FEATFLOW - Finite element software for the incompressible Navier-Stokes equations - User Manual Rele , 1998 .

[79]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[80]  J. C. Martin An experimental study of the collapse of liquid column on a rigid horizontal plane , 1952 .

[81]  A. J. Gil,et al.  Greenwich Academic Literature Archive (gala) an Upwind Vertex Centred Finite Volume Solver for Lagrangian Solid Dynamics , 2022 .

[82]  J. Bonet,et al.  Greenwich Academic Literature Archive (gala) Accepted Manuscript a Vertex Centred Finite Volume Jameson–schmidt–turkel (jst) Algorithm for a Mixed Conservation Formulation in Solid Dynamics a Vertex Centred Finite Volume Jameson-schmidt-turkel (jst) Algorithm for a Mixed Conservation Formulation in , 2022 .

[83]  I. Miyazaki,et al.  AND T , 2022 .