Automatically improving the anytime behaviour of optimisation algorithms

[1]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[2]  M. F. Fuller,et al.  Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .

[3]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[7]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[8]  Shlomo Zilberstein,et al.  Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..

[9]  Thomas Stützle,et al.  The MAX–MIN Ant System and Local Search for Combinatorial Optimization Problems: Towards Adaptive Tools for Global Optimization , 1997 .

[10]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[11]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[12]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[13]  Yoav Shoham,et al.  Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.

[14]  Yixin Chen,et al.  Optimal Anytime Constrained Simulated Annealing for Constrained Global Optimization , 2000, CP.

[15]  Future Generation Computer Systems , 2000 .

[16]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[17]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[18]  Carlos M. Fonseca,et al.  Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.

[19]  C. Fonseca,et al.  A link between the multivariate cumulative distribution function and the hitting function for random closed sets , 2002 .

[20]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[21]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[22]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[23]  Andrew W. Moore,et al.  The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.

[24]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[25]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[26]  Carlos M. Fonseca,et al.  Exploring the Performance of Stochastic Multiobjective Optimisers with the Second-Order Attainment Function , 2005, EMO.

[27]  M. Besten Simple metaheuristics for scheduling: an empirical investigation into the application of iterated local search to deterministic scheduling problems with tardiness penalties , 2005 .

[28]  Marco Chiarandini,et al.  Stochastic local search methods for highly constrained combinatorial optimisation problems: graph colouring, generalisations, and applications , 2005 .

[29]  Joshua D. Knowles A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[30]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[31]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[32]  Lothar Thiele,et al.  The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.

[33]  A. E. Eiben,et al.  A method for parameter calibration and relevance estimation in evolutionary algorithms , 2006, GECCO '06.

[34]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[35]  Carlos M. Fonseca,et al.  An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[36]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[37]  Thomas Stützle,et al.  Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement , 2007, Hybrid Metaheuristics.

[38]  Patrice Boizumault,et al.  Combining VNS with constraint programming for solving anytime optimization problems , 2008, Eur. J. Oper. Res..

[39]  F. Hutter,et al.  ParamILS: An Automatic Algorithm Configuration Framework , 2009, J. Artif. Intell. Res..

[40]  Kevin Leyton-Brown,et al.  SATenstein: Automatically Building Local Search SAT Solvers from Components , 2009, IJCAI.

[41]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[42]  Anne Auger,et al.  Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences , 2009, GECCO.

[43]  P. P. Chakrabarti,et al.  Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off , 2009, Appl. Soft Comput..

[44]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[45]  Raymond Ros,et al.  Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .

[46]  Johann Dréo,et al.  Using performance fronts for parameter setting of stochastic metaheuristics , 2009, GECCO '09.

[47]  Mauro Birattari,et al.  Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.

[48]  Thomas Stützle,et al.  Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.

[49]  Thomas Stützle,et al.  F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[50]  Thomas Stützle,et al.  Automatic Configuration of Multi-Objective ACO Algorithms , 2010, ANTS Conference.

[51]  Thomas Stützle,et al.  Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[52]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[53]  Thomas Stützle,et al.  Pre-scheduled and adaptive parameter variation in MAX-MIN Ant System , 2010, IEEE Congress on Evolutionary Computation.

[54]  Carlos M. Fonseca,et al.  The Attainment-Function Approach to Stochastic Multiobjective Optimizer Assessment and Comparison , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[55]  Catherine Legrand,et al.  Algorithm Survival Analysis , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[56]  Thomas Bartz-Beielstein,et al.  The Sequential Parameter Optimization Toolbox , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[57]  Nicola Beume,et al.  Parameter Tuning Boosts Performance of Variation Operators in Multiobjective Optimization , 2010, PPSN.

[58]  A. E. Eiben,et al.  Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..

[59]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[60]  Thomas Stützle,et al.  Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework , 2011, GECCO '11.

[61]  Jürgen Branke,et al.  Simultaneous tuning of metaheuristic parameters for various computing budgets , 2011, GECCO '11.

[62]  David L. Woodruff,et al.  Research note: the point of diminishing returns in heuristic search , 2011, Int. J. Metaheuristics.

[63]  Carlos M. Fonseca,et al.  On the Computation of the Empirical Attainment Function , 2011, EMO.

[64]  T. Stützle,et al.  The Automatic Design of Multiobjective Ant Colony Optimization Algorithms , 2012, IEEE Transactions on Evolutionary Computation.

[65]  Holger H. Hoos,et al.  Programming by optimization , 2012, Commun. ACM.

[66]  Thomas Stützle,et al.  On the Anytime Behavior of IPOP-CMA-ES , 2012, PPSN.

[67]  Thomas Stützle,et al.  Parameter Adaptation in Ant Colony Optimization , 2012, Autonomous Search.

[68]  Anne Auger,et al.  Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..

[69]  Jacek M. Zurada,et al.  Swarm and Evolutionary Computation , 2012, Lecture Notes in Computer Science.

[70]  L Manuel,et al.  The Automatic Design of Multi-Objective Ant Colony Optimization Algorithms , 2012 .

[71]  Thomas Stützle,et al.  Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms , 2013, EMO.

[72]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .