Automatically improving the anytime behaviour of optimisation algorithms
暂无分享,去创建一个
[1] R. Stephenson. A and V , 1962, The British journal of ophthalmology.
[2] M. F. Fuller,et al. Practical Nonparametric Statistics; Nonparametric Statistical Inference , 1973 .
[3] Mark S. Boddy,et al. An Analysis of Time-Dependent Planning , 1988, AAAI.
[4] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[5] D. E. Goldberg,et al. Genetic Algorithms in Search , 1989 .
[6] John N. Hooker,et al. Needed: An Empirical Science of Algorithms , 1994, Oper. Res..
[7] John N. Hooker,et al. Testing heuristics: We have it all wrong , 1995, J. Heuristics.
[8] Shlomo Zilberstein,et al. Using Anytime Algorithms in Intelligent Systems , 1996, AI Mag..
[9] Thomas Stützle,et al. The MAX–MIN Ant System and Local Search for Combinatorial Optimization Problems: Towards Adaptive Tools for Global Optimization , 1997 .
[10] Luca Maria Gambardella,et al. Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..
[11] Silvano Martello,et al. Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .
[12] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[13] Yoav Shoham,et al. Towards a universal test suite for combinatorial auction algorithms , 2000, EC '00.
[14] Yixin Chen,et al. Optimal Anytime Constrained Simulated Annealing for Constrained Global Optimization , 2000, CP.
[15] Future Generation Computer Systems , 2000 .
[16] Thomas Stützle,et al. MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..
[17] George C. Runger,et al. Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.
[18] Carlos M. Fonseca,et al. Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function , 2001, EMO.
[19] C. Fonseca,et al. A link between the multivariate cumulative distribution function and the hitting function for random closed sets , 2002 .
[20] Thomas Stützle,et al. A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.
[21] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[22] Thomas Stützle,et al. Stochastic Local Search: Foundations & Applications , 2004 .
[23] Andrew W. Moore,et al. The Racing Algorithm: Model Selection for Lazy Learners , 1997, Artificial Intelligence Review.
[24] Thomas Stützle,et al. Ant Colony Optimization Theory , 2004 .
[25] Nikolaus Hansen,et al. A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.
[26] Carlos M. Fonseca,et al. Exploring the Performance of Stochastic Multiobjective Optimisers with the Second-Order Attainment Function , 2005, EMO.
[27] M. Besten. Simple metaheuristics for scheduling: an empirical investigation into the application of iterated local search to deterministic scheduling problems with tardiness penalties , 2005 .
[28] Marco Chiarandini,et al. Stochastic local search methods for highly constrained combinatorial optimisation problems: graph colouring, generalisations, and applications , 2005 .
[29] Joshua D. Knowles. A summary-attainment-surface plotting method for visualizing the performance of stochastic multiobjective optimizers , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).
[30] Lothar Thiele,et al. A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .
[31] Thomas Bartz-Beielstein,et al. Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.
[32] Lothar Thiele,et al. The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration , 2007, EMO.
[33] A. E. Eiben,et al. A method for parameter calibration and relevance estimation in evolutionary algorithms , 2006, GECCO '06.
[34] Manuel Laguna,et al. Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..
[35] Carlos M. Fonseca,et al. An Improved Dimension-Sweep Algorithm for the Hypervolume Indicator , 2006, 2006 IEEE International Conference on Evolutionary Computation.
[36] Zbigniew Michalewicz,et al. Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.
[37] Thomas Stützle,et al. Improvement Strategies for the F-Race Algorithm: Sampling Design and Iterative Refinement , 2007, Hybrid Metaheuristics.
[38] Patrice Boizumault,et al. Combining VNS with constraint programming for solving anytime optimization problems , 2008, Eur. J. Oper. Res..
[39] F. Hutter,et al. ParamILS: An Automatic Algorithm Configuration Framework , 2009, J. Artif. Intell. Res..
[40] Kevin Leyton-Brown,et al. SATenstein: Automatically Building Local Search SAT Solvers from Components , 2009, IJCAI.
[41] Tobias Achterberg,et al. SCIP: solving constraint integer programs , 2009, Math. Program. Comput..
[42] Anne Auger,et al. Investigating and exploiting the bias of the weighted hypervolume to articulate user preferences , 2009, GECCO.
[43] P. P. Chakrabarti,et al. Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off , 2009, Appl. Soft Comput..
[44] Carlos Ansótegui,et al. A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.
[45] Raymond Ros,et al. Real-Parameter Black-Box Optimization Benchmarking 2009: Experimental Setup , 2009 .
[46] Johann Dréo,et al. Using performance fronts for parameter setting of stochastic metaheuristics , 2009, GECCO '09.
[47] Mauro Birattari,et al. Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.
[48] Thomas Stützle,et al. Frankenstein's PSO: A Composite Particle Swarm Optimization Algorithm , 2009, IEEE Transactions on Evolutionary Computation.
[49] Thomas Stützle,et al. F-Race and Iterated F-Race: An Overview , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[50] Thomas Stützle,et al. Automatic Configuration of Multi-Objective ACO Algorithms , 2010, ANTS Conference.
[51] Thomas Stützle,et al. Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[52] Thomas Bartz-Beielstein,et al. Experimental Methods for the Analysis of Optimization Algorithms , 2010 .
[53] Thomas Stützle,et al. Pre-scheduled and adaptive parameter variation in MAX-MIN Ant System , 2010, IEEE Congress on Evolutionary Computation.
[54] Carlos M. Fonseca,et al. The Attainment-Function Approach to Stochastic Multiobjective Optimizer Assessment and Comparison , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[55] Catherine Legrand,et al. Algorithm Survival Analysis , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[56] Thomas Bartz-Beielstein,et al. The Sequential Parameter Optimization Toolbox , 2010, Experimental Methods for the Analysis of Optimization Algorithms.
[57] Nicola Beume,et al. Parameter Tuning Boosts Performance of Variation Operators in Multiobjective Optimization , 2010, PPSN.
[58] A. E. Eiben,et al. Parameter tuning for configuring and analyzing evolutionary algorithms , 2011, Swarm Evol. Comput..
[59] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[60] Thomas Stützle,et al. Automatic configuration of state-of-the-art multi-objective optimizers using the TP+PLS framework , 2011, GECCO '11.
[61] Jürgen Branke,et al. Simultaneous tuning of metaheuristic parameters for various computing budgets , 2011, GECCO '11.
[62] David L. Woodruff,et al. Research note: the point of diminishing returns in heuristic search , 2011, Int. J. Metaheuristics.
[63] Carlos M. Fonseca,et al. On the Computation of the Empirical Attainment Function , 2011, EMO.
[64] T. Stützle,et al. The Automatic Design of Multiobjective Ant Colony Optimization Algorithms , 2012, IEEE Transactions on Evolutionary Computation.
[65] Holger H. Hoos,et al. Programming by optimization , 2012, Commun. ACM.
[66] Thomas Stützle,et al. On the Anytime Behavior of IPOP-CMA-ES , 2012, PPSN.
[67] Thomas Stützle,et al. Parameter Adaptation in Ant Colony Optimization , 2012, Autonomous Search.
[68] Anne Auger,et al. Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications , 2012, Theor. Comput. Sci..
[69] Jacek M. Zurada,et al. Swarm and Evolutionary Computation , 2012, Lecture Notes in Computer Science.
[70] L Manuel,et al. The Automatic Design of Multi-Objective Ant Colony Optimization Algorithms , 2012 .
[71] Thomas Stützle,et al. Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms , 2013, EMO.
[72] Leslie Pérez Cáceres,et al. The irace package: Iterated racing for automatic algorithm configuration , 2016 .