Recent progress in lasers on silicon

[1]  L. Cerutti,et al.  GaSb-Based Laser, Monolithically Grown on Silicon Substrate, Emitting at 1.55 $\mu$ m at Room Temperature , 2010, IEEE Photonics Technology Letters.

[2]  J. Bowers,et al.  Integrated triplexer on hybrid silicon platform , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[3]  O. Raz,et al.  Compact, low power and low threshold electrically pumped micro disc lasers for 20Gb/s non return to zero all optical wavelength conversion , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[4]  Geert Morthier,et al.  An ultra-small, low-power all-optical flip-flop memory on a silicon chip , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[5]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[6]  O Jambois,et al.  Towards population inversion of electrically pumped Er ions sensitized by Si nanoclusters. , 2010, Optics express.

[7]  Philippe Regreny,et al.  Improved design of an InP-based microdisk laser heterogeneously integrated with SOI , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[8]  John E. Bowers,et al.  Monolithic Ge/Si avalanche photodiodes , 2009, 2009 6th IEEE International Conference on Group IV Photonics.

[9]  Di Liang,et al.  Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. , 2009, Optics express.

[10]  Anthony J. Kenyon,et al.  Current Transport and Electroluminescence Mechanisms in Thin SiO2 Films Containing Si Nanoclusters-Sensitized Er Ion , 2009 .

[11]  David A. B. Miller,et al.  Device Requirements for Optical Interconnects to Silicon Chips , 2009, Proceedings of the IEEE.

[12]  Jesse Lu,et al.  Room temperature 1.6 microm electroluminescence from Ge light emitting diode on Si substrate. , 2009, Optics express.

[13]  Jurgen Michel,et al.  Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. , 2009, Optics letters.

[14]  David Chapman,et al.  High-Quality 150 mm InP-to-Silicon Epitaxial Transfer for Silicon Photonic Integrated Circuits , 2009 .

[15]  N. Koshida Device Applications of Silicon Nanocrystals and Nanostructures , 2009 .

[16]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[17]  Wolfgang Stolz,et al.  Monolithic integration of Ga(NAsP)/(BGa)P multi-quantum well structures on (0 0 1) silicon substrate by MOVPE , 2008 .

[18]  Di Liang,et al.  A Distributed Bragg Reflector Silicon Evanescent Laser , 2008, IEEE Photonics Technology Letters.

[19]  Omri Raday,et al.  Integration of hybrid silicon lasers and electroabsorption modulators. , 2008, Optics express.

[20]  Di Liang,et al.  Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate , 2008 .

[21]  L. Di Cioccio,et al.  A Compact SOI-Integrated Multiwavelength Laser Source Based on Cascaded InP Microdisks , 2008, IEEE Photonics Technology Letters.

[22]  Lorenzo Pavesi,et al.  Silicon-Based Light Sources for Silicon Integrated Circuits , 2008 .

[23]  C. Seassal,et al.  Development of Silicon Photonics Devices Using Microelectronic Tools for the Integration on Top of a CMOS Wafer , 2008 .

[24]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[25]  Richard A. Soref,et al.  Toward silicon-based longwave integrated optoelectronics (LIO) , 2008, SPIE OPTO.

[26]  J. Bowers,et al.  Experimental and theoretical thermal analysis of a Hybrid Silicon Evanescent Laser. , 2007, Optics express.

[27]  M. Morse,et al.  31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. , 2007, Optics express.

[28]  Jurgen Michel,et al.  Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. , 2007, Optics express.

[29]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[30]  David A B Miller,et al.  Optical modulator on silicon employing germanium quantum wells. , 2007, Optics express.

[31]  Omri Raday,et al.  Low-threshold continuous-wave Raman silicon laser , 2007 .

[32]  Omri Raday,et al.  Integrated AlGaInAs-silicon evanescent racetrack laser and photodetector , 2007, SPIE Optics East.

[33]  Bahram Jalali,et al.  Making silicon lase. , 2007, Scientific American.

[34]  I. Crupi,et al.  Silicon-Based Light-Emitting Devices: Properties and Applications of Crystalline, Amorphous and Er-Doped Nanoclusters , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[35]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[36]  R Baets,et al.  Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. , 2006, Optics express.

[37]  K. Volz,et al.  Direct-band-gap Ga(NAsP)-material system pseudomorphically grown on GaP substrate , 2006 .

[38]  S. Cloutier,et al.  Optical gain and stimulated emission in periodic nanopatterned crystalline silicon , 2005, Nature materials.

[39]  John Bowers,et al.  Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells. , 2005, Optics express.

[40]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[41]  Bahram Jalali,et al.  Raman amplification and lasing in SiGe waveguides. , 2005, Optics express.

[42]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[43]  Alexander Fang,et al.  Net continuous wave optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. , 2005, Optics express.

[44]  Lorenzo Pavesi,et al.  Routes toward silicon-based lasers , 2005 .

[45]  M. Smit,et al.  A fast low-power optical memory based on coupled micro-ring lasers , 2004, Nature.

[46]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[47]  Rajeev J. Ram,et al.  Improved room-temperature continuous wave GaAs/AlGaAs and InGaAs/GaAs/AlGaAs lasers fabricated on Si substrates via relaxed graded GexSi1−x buffer layers , 2003 .

[48]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[49]  Bahram Jalali,et al.  Observation of Raman emission in silicon waveguides at 1.54 microm. , 2002, Optics express.

[50]  Klas Hjort,et al.  Plasma-assisted InP-to-Si low temperature wafer bonding , 2002 .

[51]  H. Kawanami,et al.  Heteroepitaxial technologies of III-V on Si , 2001 .

[52]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[53]  L. Kimerling,et al.  Effect of size and roughness on light transmission in a Si/SiO2 waveguide: Experiments and model , 2000 .

[54]  A. Hovinen,et al.  Fabrication of a silicon based electroluminescent device , 2000 .

[55]  S. Ossicini,et al.  Porous silicon: a quantum sponge structure for silicon based optoelectronics , 2000 .

[56]  Keiichi Yamamoto,et al.  1.54 μm photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals: Evidence for energy transfer from Si nanocrystals to Er3+ , 1997 .

[57]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[58]  Dimitrios Papadimitriou,et al.  ELECTROLUMINESCENT DEVICE BASED ON SILICON NANOPILLARS , 1996 .

[59]  Jang-Kyoo Shin,et al.  Reduction of threading dislocation density in InP‐on‐Si heteroepitaxy with strained short‐period superlattices , 1996 .

[60]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[61]  U. Gösele,et al.  Light-emitting porous silicon☆ , 1995 .

[62]  T. Ueda,et al.  Method to Obtain Low-Dislocation-Density Regions by Patterning with SiO2 on GaAs/Si Followed by Annealing , 1994 .

[63]  P. F. Szajowski,et al.  Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals , 1993, Science.

[64]  A. G. Cullis,et al.  Visible light emission due to quantum size effects in highly porous crystalline silicon , 1991, Nature.

[65]  Y. Horikoshi,et al.  Low threading dislocation density GaAs on Si(100) with InGaAs/GaAs strained-layer superlattice grown by migration-enhanced epitaxy , 1991 .

[66]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[67]  Yoshio Itoh,et al.  Misfit stress dependence of dislocation density reduction in GaAs films on Si substrates grown by strained‐layer superlattices , 1989 .

[68]  R. Soref,et al.  All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm , 1986 .

[69]  Kang L. Wang,et al.  An investigation on surface conditions for Si molecular beam epitaxial (MBE) growth , 1985 .

[70]  Thomas S. Collett,et al.  Experiments and Models , 1983 .