NaBeAs and NaBeSb: Novel Ternary Pnictides with Enhanced Thermoelectric Performance

[1]  Chen Shen,et al.  High Thermoelectric Performance of Al2X2Se2 (X = Cl, Br, I) Monolayers with Strong Anisotropy in Lattice Thermal Conductivity , 2022, ACS Applied Energy Materials.

[2]  A. Márquez,et al.  Charting the Lattice Thermal Conductivities of I–III–VI2 Chalcopyrite Semiconductors , 2022, Chemistry of Materials.

[3]  Z. Yin,et al.  Boosting Thermoelectric Performance of 2D Transition-Metal Dichalcogenides by Complex Cluster Substitution: The Role of Octahedral Au6 Clusters , 2021, ACS Applied Energy Materials.

[4]  David J. Singh,et al.  Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2 , 2021, Nature Communications.

[5]  A. Walsh,et al.  Prediction of high thermoelectric performance in the low-dimensional metal halide Cs3Cu2I5 , 2021, npj Computational Materials.

[6]  X. Zu,et al.  Band degeneracy enhanced thermoelectric performance in layered oxyselenides by first-principles calculations , 2021, npj Computational Materials.

[7]  Anubhav Jain,et al.  IFermi: A python library for Fermi surface generation and analysis , 2021, J. Open Source Softw..

[8]  Han Byul Kang,et al.  Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application , 2020, iScience.

[9]  D. Baran,et al.  Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity , 2020, Advanced science.

[10]  G. J. Snyder,et al.  The Thermoelectric Properties of n-Type Bismuth Telluride: Bismuth Selenide Alloys Bi2Te3−xSex , 2020, Research.

[11]  Yue Chen,et al.  Manipulation of Band Degeneracy and Lattice Strain for Extraordinary PbTe Thermoelectrics , 2020, Research.

[12]  G. Balasubramanian,et al.  Ultralow lattice thermal conductivity of chalcogenide perovskite CaZrSe3 contributes to high thermoelectric figure of merit , 2019, npj Computational Materials.

[13]  O. Janka,et al.  The role of beryllium in alloys, Zintl phases and intermetallic compounds , 2019, Zeitschrift für Naturforschung B.

[14]  S. De Wolf,et al.  Ultralow Lattice Thermal Conductivity and Thermoelectric Properties of Monolayer Tl2O , 2019, ACS Applied Energy Materials.

[15]  David J. Singh,et al.  Discovery of TaFeSb-based half-Heuslers with high thermoelectric performance , 2019, Nature Communications.

[16]  Madhubanti Mukherjee,et al.  High Thermoelectric Figure of Merit via Tunable Valley Convergence Coupled Low Thermal Conductivity in AIIBIVC2V Chalcopyrites , 2018, The Journal of Physical Chemistry C.

[17]  C. Lee,et al.  Understanding of the Elastic Constants, Energetics, and Bonding in Dicalcium Silicate Using First-Principles Calculations , 2018, The Journal of Physical Chemistry C.

[18]  G. Murtaza,et al.  Optoelectronic and transport properties of LiBZ (B = Al, In, Ga and Z = Si, Ge, Sn) semiconductors , 2018 .

[19]  G. Madsen,et al.  BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients , 2017, Comput. Phys. Commun..

[20]  Wei Chen,et al.  An ab initio electronic transport database for inorganic materials , 2017, Scientific Data.

[21]  Anubhav Jain,et al.  Effective mass and Fermi surface complexity factor from ab initio band structure calculations , 2017, npj Computational Materials.

[22]  Yan-cheng Wang,et al.  Hierarchical Chemical Bonds Contributing to the Intrinsically Low Thermal Conductivity in α‐MgAgSb Thermoelectric Materials , 2017 .

[23]  M. Kanatzidis,et al.  Concerted Rattling in CsAg5 Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance. , 2016, Angewandte Chemie.

[24]  M. Kanatzidis,et al.  Dynamic Stereochemical Activity of the Sn(2+) Lone Pair in Perovskite CsSnBr3. , 2016, Journal of the American Chemical Society.

[25]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[26]  Wenqing Zhang,et al.  Designing high-performance layered thermoelectric materials through orbital engineering , 2016, Nature Communications.

[27]  David J. Singh,et al.  On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective , 2016 .

[28]  Heng Wang,et al.  Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe , 2016, Science.

[29]  Davor Pavuna,et al.  Tuning of the Thermoelectric Figure of Merit of CH3NH3MI3 (M=Pb,Sn) Photovoltaic Perovskites , 2015, 1505.07389.

[30]  Stefano Curtarolo,et al.  Low thermal conductivity and triaxial phononic anisotropy of SnSe , 2014, 1406.3532.

[31]  Wu Li,et al.  ShengBTE: A solver of the Boltzmann transport equation for phonons , 2014, Comput. Phys. Commun..

[32]  Hui Sun,et al.  High thermoelectric performance of p-type SnTe via a synergistic band engineering and nanostructuring approach. , 2014, Journal of the American Chemical Society.

[33]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[34]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[35]  A. Zaoui,et al.  I–II–V and I–III–IV half-Heusler compounds for optoelectronic applications: Comparative ab initio study , 2014 .

[36]  D. Negi,et al.  High thermoelectric performance in tellurium free p-type AgSbSe2 , 2013 .

[37]  N. Pryds,et al.  The Influence of α- and γ-Al2O3 Phases on the Thermoelectric Properties of Al-doped ZnO , 2013 .

[38]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[39]  G. J. Snyder,et al.  High Thermoelectric Figure of Merit in PbTe Alloys Demonstrated in PbTe–CdTe , 2012 .

[40]  Gang Chen,et al.  High-performance flat-panel solar thermoelectric generators with high thermal concentration. , 2011, Nature materials.

[41]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[42]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[43]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[44]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[45]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[46]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[47]  C Wood,et al.  Materials for thermoelectric energy conversion , 1988 .

[48]  J. Burdett,et al.  Electronic structure of transition-metal borides with the AlB2 structure , 1986 .

[49]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[50]  D. Koelling,et al.  A linearised relativistic augmented-plane-wave method utilising approximate pure spin basis functions , 1980 .

[51]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .