Restoration of DWI Data Using a Rician LMMSE Estimator

This paper introduces and analyzes a linear minimum mean square error (LMMSE) estimator using a Rician noise model and its recursive version (RLMMSE) for the restoration of diffusion weighted images. A method to estimate the noise level based on local estimations of mean or variance is used to automatically parametrize the estimator. The restoration performance is evaluated using quality indexes and compared to alternative estimation schemes. The overall scheme is simple, robust, fast, and improves estimations. Filtering diffusion weighted magnetic resonance imaging (DW-MRI) with the proposed methodology leads to more accurate tensor estimations. Real and synthetic datasets are analyzed.

[1]  Carl-Fredrik Westin,et al.  Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach , 2008, IEEE Transactions on Image Processing.

[2]  Carl-Fredrik Westin,et al.  Signal LMMSE Estimation from Multiple Samples in MRI and DT-MRI , 2007, MICCAI.

[3]  C. Westin,et al.  Sequential anisotropic Wiener filtering applied to 3D MRI data. , 2007, Magnetic resonance imaging.

[4]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[5]  M. Goyal,et al.  State-of-the-art imaging of acute stroke. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[6]  P. Basser,et al.  A unifying theoretical and algorithmic framework for least squares methods of estimation in diffusion tensor imaging. , 2006, Journal of magnetic resonance.

[7]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[8]  Jan Sijbers,et al.  Robust estimation of the noise variance from background MR data , 2006, SPIE Medical Imaging.

[9]  Yunmei Chen,et al.  DT-MRI denoising and neuronal fiber tracking , 2004, Medical Image Anal..

[10]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[11]  J. Sijbers,et al.  Maximum likelihood estimation of signal amplitude and noise variance from MR data , 2004, Magnetic resonance in medicine.

[12]  Aleksandra Pizurica,et al.  A versatile wavelet domain noise filtration technique for medical imaging , 2003, IEEE Transactions on Medical Imaging.

[13]  Roland Bammer,et al.  Diffusion tensor imaging using single‐shot SENSE‐EPI , 2002, Magnetic resonance in medicine.

[14]  Carl-Fredrik Westin,et al.  Processing and visualization for diffusion tensor MRI , 2002, Medical Image Anal..

[15]  Joseph A. O'Sullivan,et al.  ATR performance of a Rician model for SAR images , 2000, SPIE Defense + Commercial Sensing.

[16]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[17]  Chang Beom Ahn,et al.  Adaptive template filtering for signal-to-noise ratio enhancement in magnetic resonance imaging , 1999, IEEE Transactions on Medical Imaging.

[18]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.

[19]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[20]  C. Henriquez,et al.  Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. , 1998, American journal of physiology. Heart and circulatory physiology.

[21]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[22]  Thomas L. Marzetta,et al.  EM algorithm for estimating the parameters of a multivariate complex Rician density for polarimetric SAR , 1995, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[23]  M. Smith,et al.  An unbiased signal-to-noise ratio measure for magnetic resonance images. , 1993, Medical physics.

[24]  D. M. Drumheller General expressions for Rician density and distribution functions , 1993 .

[25]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[26]  Norman C. Beaulieu,et al.  An infinite series for the computation of the complementary probability distribution function of a sum of independent random variables and its application to the sum of Rayleigh random variables , 1990, IEEE Trans. Commun..

[27]  Jorge Herbert de Lira,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[28]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[29]  Kristopher Tapp Differential Geometry of Curves and Surfaces , 1952, Nature.

[30]  R. Kikinis,et al.  A review of diffusion tensor imaging studies in schizophrenia. , 2007, Journal of psychiatric research.

[31]  Raúl San José Estépar,et al.  Image Quality Assessment based on Local Variance , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[32]  Fabrice Labeau,et al.  Discrete Time Signal Processing , 2004 .

[33]  Wenhui Yang,et al.  Adaptive Magnetic Resonance Image Denoising Using Mixture Model and Wavelet Shrinkage , 2003, DICTA.

[34]  Marvin Simon,et al.  Probability Distributions Involving Gaussian Random Variables , 2002 .

[35]  Jan Sijbers,et al.  Estimation of signal and noise from Rician distributed data , 1998 .

[36]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[37]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[38]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[39]  Christian Beaulieu Published online in Wiley InterScience (www.interscience.wiley.com). DOI:10.1002/nbm.782 Review Article , 2022 .