Input-dependent incremental stability criterion for piece-wise linear analogs of van der Pol systems

The paper proposes and advocates a novel technique of Lyapunov analysis that is based on the concept of averaging functions and Steklov's averaging method. This approach relaxes quadratic criteria for incremental stability of nonlinear systems. The stability criteria rest on time-dependent quadratic or non-quadratic Lyapunov functions and offer better account for the role of the external excitation by providing input-dependent conditions. In particular, the proposed method works even if the system fails to satisfy the incremental version of the circle criterion and, for example, proves frequency entrainment for a piece-wise linear analog of the van der Pol oscillator whenever the input has sufficiently large amplitude.

[1]  Alexey S. Matveev,et al.  Stability Analysis via Averaging Functions , 2016, IEEE Transactions on Automatic Control.

[2]  Rodolphe Sepulchre,et al.  A Differential Lyapunov Framework for Contraction Analysis , 2012, IEEE Transactions on Automatic Control.

[3]  Alexey S. Matveev,et al.  Input-dependent stability analysis of systems with saturation in feedback , 2013, 52nd IEEE Conference on Decision and Control.

[4]  Alexey S. Matveev,et al.  A non-quadratic criterion for stability of forced oscillations and its application to flight control , 2013 .

[5]  Nathan van de Wouw,et al.  Convergent systems vs. incremental stability , 2013, Syst. Control. Lett..

[6]  Gennady A. Leonov,et al.  The dimension formula for the Lorenz attractor , 2011 .

[7]  Alexey S. Matveev,et al.  A topological entropy approach for observation via channels with limited data rate , 2011 .

[8]  Alexey S. Matveev,et al.  Estimation of topological entropy via the direct Lyapunov method , 2011, PSYCO.

[9]  G. Leonov Strange attractors and classical stability theory , 2006 .

[10]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[11]  V. Boichenko,et al.  Dimension theory for ordinary differential equations , 2005 .

[12]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[13]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[14]  V. Yakubovich Necessity in quadratic criterion for absolute stability , 2000 .

[15]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[16]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[17]  D. Aeyels,et al.  A new asymptotic stability criterion for nonlinear time-variant differential equations , 1998, IEEE Trans. Autom. Control..

[18]  S. Monaco,et al.  Asymptotic properties of incrementally stable systems , 1996, IEEE Trans. Autom. Control..

[19]  Li︠u︡dmila I︠A︡kovlevna Adrianova Introduction to linear systems of differential equations , 1995 .

[20]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[21]  N. Lloyd On the non-autonomous van der Pol equation with large parameter , 1972, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  V. A. Pliss Nonlocal Problems of the Theory of Oscillations , 1966 .

[23]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[24]  H. Antosiewicz Review: Joseph La Salle and Solomon Lefschetz, Stability by Liapunov's direct method with applications , 1963 .

[25]  Solomon Lefschetz,et al.  Stability by Liapunov's Direct Method With Applications , 1962 .

[26]  J. E. Littlewood,et al.  On non-linear differential equations of the second order: III. The equation $$\ddot y - k(1 - y^2 )\dot y + y = b \mu k cos (\mu t + \alpha )$$ for largek, and its generalizationsfor largek, and its generalizations , 1957 .

[27]  T. Yoshizawa On the non-linear differential equation , 1953 .

[28]  J. Littlewood On non-linear differential equations of the second order: IV. The general equation $$\ddot y + kf\left( y \right)\dot y + g\left( y \right) = bkp\left( \varphi \right)$$ , φ=t+α, φ=t+α , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.

[29]  B. V. D. Pol,et al.  Frequency Demultiplication , 1927, Nature.