On the fragility of fractional-order PID controllers for IPDT processes

This paper investigates the fragility (both from the stability and performance point of view) of (optimally tuned) fractional-order P(I)D controllers applied to integral processes. Indeed, the effects of the variations of the controller parameters are investigated in order to understand if the fine tuning of the controller is a critical issue. Both the set-point response and the load disturbance rejection tasks are considered. A comparison with standard integer-order P(I)D controllers is also performed.

[1]  Ramon Vilanova,et al.  Fragility-Rings - A Graphic Tool for PI/PID Controllers Robustness-Fragility Analysis , 2012 .

[2]  J. Paattilammi,et al.  Fragility and robustness: a case study on paper machine headbox control , 2000 .

[3]  YangQuan Chen,et al.  Tuning and auto-tuning of fractional order controllers for industry applications , 2008 .

[4]  Duarte Valério,et al.  Tuning of fractional PID controllers with Ziegler-Nichols-type rules , 2006, Signal Process..

[5]  Antonio Visioli,et al.  Tuning rules for optimal PID and fractional-order PID controllers , 2011 .

[6]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[7]  Ramon Vilanova,et al.  Fragility Evaluation of PI and PID Controllers Tuning Rules , 2012 .

[8]  Ramón Vilanova,et al.  Fragility analysis of PID controllers , 2009, 2009 IEEE Control Applications, (CCA) & Intelligent Control, (ISIC).

[9]  Shankar P. Bhattacharyya,et al.  Comments on "Robust, fragile, or optimal?" [with reply] , 1998, IEEE Trans. Autom. Control..

[10]  Y. Chen,et al.  Practical Tuning Rule Development for Fractional Order Proportional and Integral Controllers , 2008 .

[11]  Antonio Visioli,et al.  On the fragility of fractional-order PID controllers for IPDT processes , 2017, 2017 25th Mediterranean Conference on Control and Automation (MED).

[12]  Antonio Visioli,et al.  The generalised isodamping approach for robust fractional PID controllers design , 2017, Int. J. Control.

[13]  Mohammad Saleh Tavazoei,et al.  A new view to Ziegler–Nichols step response tuning method: Analytic non-fragility justification , 2013 .

[14]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[15]  Ming-Tzu Ho Non-fragile PID controller design , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[16]  Shankar P. Bhattacharyya,et al.  Robust, fragile, or optimal? , 1997, IEEE Trans. Autom. Control..

[17]  A. J. Calderón,et al.  On Fractional PIλ Controllers: Some Tuning Rules for Robustness to Plant Uncertainties , 2004 .

[18]  J. A. Tenreiro Machado,et al.  Tuning of PID Controllers Based on Bode’s Ideal Transfer Function , 2004 .

[19]  Antonio Visioli,et al.  Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes , 2012 .

[20]  Edward J. Davison,et al.  Feedback stability under simultaneous gap metric uncertainties in plant and controller , 1992 .

[21]  Víctor M Alfaro PID controllers' fragility. , 2007, ISA transactions.

[22]  Antonio Visioli,et al.  Fractional robust PID control of a solar furnace , 2016 .

[23]  A. J. Calderón,et al.  Fractional PID Controllers for Industry Application. A Brief Introduction , 2007 .