Coding Schemes for User Cooperation in Low-Power Regimes

We consider the design of cooperation coding schemes for a two-user multiaccess channel (MAC). In particular, we consider two block Markov coding schemes, namely, the multiplexed coding and the superposition coding. Although the fully multiplexed (FMP) coding outperforms the superposition coding in theory, it is difficult to implement with practical error-correction codes. We, therefore, introduce a partially multiplexed (PMP) coding scheme for code rate R < 0.5, and propose a simplified superposition coding scheme. The outage analysis shows that these cooperation schemes provide significant gains over the non- cooperative MAC in the low-power regime when the bandwidth W rarr infin. We then propose a PMP code design using irregular repeat accumulate (IRA) codes. The design method can be extended to build the low-rate PMP codes using irregular repeat zigzag Hadamard (IRZH) codes, a new class of capacity achieving low-rate codes. Simulation results demonstrate that the block Markov multiplexed coding using PMP-IRA codes outperforms the practical superposition coding by 2 dB at 10-2 FER, and it provides a 10-dB gain over the noncooperative MAC. The multiplex coding using PMP-IRZH codes offers 1-dB gain over the superposition coding, and a 9.5-dB gain over noncooperative MAC at 10-2 FER. Moreover, the PMP-IRZH coding performs only 0.5 dB away from the outage capacity of multiplexed coding in the low-power regime.

[1]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[2]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[3]  Cyril Leung,et al.  An achievable rate region for the multiple-access channel with feedback , 1981, IEEE Trans. Inf. Theory.

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .

[6]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[7]  Mark A Beach,et al.  Division-free duplex for wireless applications , 1998 .

[8]  H. Jin,et al.  Irregular repeat accumulate codes , 2000 .

[9]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[10]  Daniel A. Spielman,et al.  Efficient erasure correcting codes , 2001, IEEE Trans. Inf. Theory.

[11]  Daniel A. Spielman,et al.  Improved low-density parity-check codes using irregular graphs and belief propagation , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[12]  Sergio Verdú,et al.  Spectral efficiency in the wideband regime , 2002, IEEE Trans. Inf. Theory.

[13]  Elza Erkip,et al.  User cooperation diversity. Part I. System description , 2003, IEEE Trans. Commun..

[14]  Elza Erkip,et al.  User cooperation diversity. Part II. Implementation aspects and performance analysis , 2003, IEEE Trans. Commun..

[15]  Gregory W. Wornell,et al.  Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks , 2003, IEEE Trans. Inf. Theory.

[16]  William E. Ryan,et al.  Design of efficiently encodable moderate-length high-rate irregular LDPC codes , 2004, IEEE Transactions on Communications.

[17]  Gregory W. Wornell,et al.  Cooperative diversity in wireless networks: Efficient protocols and outage behavior , 2004, IEEE Transactions on Information Theory.

[18]  Zheng Zhang,et al.  Capacity approaching codes for relay channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Zheng Zhang,et al.  Capacity-approaching turbo coding and iterative decoding for relay channels , 2005, IEEE Transactions on Communications.

[20]  Guosen Yue,et al.  Optimization of irregular repeat accumulate codes for MIMO systems with iterative receivers , 2005, IEEE Transactions on Wireless Communications.

[21]  Ashutosh Sabharwal,et al.  LDPC Code Design for Half-Duplex Decode-and-Forward Relaying , 2005 .

[22]  Zigui Yang,et al.  Cooperation Efficiency in the Low Power Regime , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..

[23]  Guosen Yue,et al.  Low-rate generalized low-density parity-check codes with hadamard constraints , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[24]  A. H. W. Zhang,et al.  Capacity-Approaching Turbo Coding For Half-Duplex Relaying , 2007, IEEE Transactions on Communications.

[25]  Jun Hu,et al.  Low Density Parity Check Codes over Half-duplex Relay Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[26]  Li Ping,et al.  Concatenated zigzag hadamard codes , 2006, IEEE Transactions on Information Theory.

[27]  Ashutosh Sabharwal,et al.  Half-Duplex Estimate-and-Forward Relaying: Bounds and Code Design , 2006, 2006 IEEE International Symposium on Information Theory.

[28]  Zixiang Xiong,et al.  Cooperation in the Low Power Regime for the MAC Using Multiplexed Rateless Codes , 2010, IEEE Transactions on Signal Processing.