Refractive indices of organo‐metallic and ‐metalloid compounds: A long‐range corrected DFT study

Refractive indices of metal‐ and metalloid‐containing compounds are systematically evaluated using the Lorentz–Lorenz equation with polarizabilities obtained via density functional theory (DFT). Among exchange‐correlation functionals studied, the long‐range corrected (LC) fuctionals yield the lowest errors for the polarizabilities of gaseous compounds and refractive indices of liquids. The LC‐DFT predicts very well the wavelength dependence of refractive indices. A scheme for computing Abbe numbers of organometallic and organometaloid compounds is proposed and a refractive index – Abbe number plot for 80 compounds is constructed. The compounds containing heavier metals tend to have higher refractive index and lower Abbe number, but several outliers, among them Te(CH3)2, Ni(PF3)4, Sb(C2F3)3, Hg(C2F3)2, are found. For Hg(C2F3)2, also the effect of intramolecular and intermolecular degrees of freedom on polarizability is investigated. The absolute relative error in polarizability decreases from 5.7% for monomer model to 1.7% when a dimer model (derived from the available experimental crystal data) is employed. © 2016 Wiley Periodicals, Inc.

[1]  Kimihiko Hirao,et al.  On Koopmans' theorem in density functional theory. , 2010, The Journal of chemical physics.

[2]  Mark R Pederson,et al.  Density-Functional-Based Determination of Vibrational Polarizabilities in Molecules within the Double-Harmonic Approximation:  Derivation and Application. , 2005, Journal of chemical theory and computation.

[3]  K. Yamashita,et al.  Two Different Lifetimes of Charge Separated States: a Porphyrin–Quinone System in Artificial Photosynthesis , 2012 .

[4]  Alan R. Katritzky,et al.  General Quantitative Structure-Property Relationship Treatment of the Refractive Index of Organic Compounds , 1998, J. Chem. Inf. Comput. Sci..

[5]  A. Thakkar,et al.  Electric properties of stannous and stannic halides: How good are the experimental values? , 2015 .

[6]  Xing-hong Zhang,et al.  Well-defined high refractive index poly(monothiocarbonate) with tunable Abbe's numbers and glass-transition temperatures via terpolymerization , 2015 .

[7]  G. Zerbi,et al.  Electronic and relaxation contribution to linear molecular polarizability. An analysis of the experimental values , 1998 .

[8]  B. Tang,et al.  Metallized hyperbranched polydiyne: a photonic material with a large refractive index tunability and a spin-coatable catalyst for facile fabrication of carbon nanotubes. , 2007, Chemical communications.

[9]  Lorentz-Lorenz coefficient, critical point constants, and coexistence curve of 1,1-difluoroethylene. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[11]  H. Stoll,et al.  Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-d group 16–18 elements , 2003 .

[12]  A. Lagendijk,et al.  Point scatterers for classical waves , 1998 .

[13]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[14]  B. Shepler,et al.  On the spectroscopic and thermochemical properties of ClO, BrO, IO, and their anions. , 2006, The journal of physical chemistry. A.

[15]  Tomoya Higashihara,et al.  Recent Progress in High Refractive Index Polymers , 2015 .

[16]  Kimihiko Hirao,et al.  Polarizability and second hyperpolarizability evaluation of long molecules by the density functional theory with long-range correction. , 2007, The Journal of chemical physics.

[17]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[18]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[19]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[20]  Ben Zhong Tang,et al.  Acetylenic polymers: syntheses, structures, and functions. , 2009, Chemical reviews.

[21]  Wu Gui-long,et al.  Prediction of Polymer Properties , 2003 .

[22]  J. Jellinek,et al.  Site-Specific Analysis of Dielectric Properties of Finite Systems† , 2007 .

[23]  C. Cramer,et al.  Reduced and quenched polarizabilities of interior atoms in molecules , 2013 .

[24]  J. A. Chapman,et al.  Temperature and Density Dependence of the Molar Polarizability of Xenon , 1968 .

[25]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[26]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[27]  Masahiro Ehara,et al.  Excited states and electronic spectra of extended tetraazaporphyrins. , 2010, The Journal of chemical physics.

[28]  Kimihiko Hirao,et al.  Nonlinear optical property calculations by the long-range-corrected coupled-perturbed Kohn-Sham method. , 2005, The Journal of chemical physics.

[29]  Michael P. Shaver,et al.  Intrinsic high refractive index polymers , 2015 .

[30]  O. Kühn,et al.  Electronic excitation spectra of the [Ir(ppy)2(bpy)]+ photosensitizer bound to small silver clusters Ag(n) (n = 1-6). , 2012, Physical chemistry chemical physics : PCCP.

[31]  G. Wilkinson The Preparation and Properties of Tetrakistribromophosphine Nickel and Tetrakistrifluorophosphine Nickel , 1951 .

[32]  Yu-Ming Lin,et al.  Transparent high refractive index nanocomposite thin films , 2007 .

[33]  J. R. Carl,et al.  Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities , 1972 .

[34]  D. M. Bishop,et al.  A perturbation method for calculating vibrational dynamic dipole polarizabilities and hyperpolarizabilities , 1991 .

[35]  L. Cheng,et al.  Preparation of organic–inorganic nano-composites for antireflection coatings , 2008 .

[36]  Kimihiko Hirao,et al.  Long-range corrected density functional calculations of chemical reactions: redetermination of parameter. , 2007, The Journal of chemical physics.

[37]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[38]  Ramón Bosque,et al.  Polarizabilities of Solvents from the Chemical Composition , 2002, J. Chem. Inf. Comput. Sci..

[39]  D. Balzarini,et al.  Lorentz-Lorenz coefficient of ethane , 1974 .

[40]  U. Hohm Experimental static dipole–dipole polarizabilities of molecules , 2013 .

[41]  M. Panhuis,et al.  Distributed polarizability of the water dimer: Field-induced charge transfer along the hydrogen bond , 2001 .

[42]  Bai Yang,et al.  PbS/Polymer Nanocomposite Optical Materials with High Refractive Index , 2005 .

[43]  Yasutake Toyoshima,et al.  Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6, and Si3H8 , 1986 .

[44]  J. Gauss,et al.  Polarizabilities of CO, N2, HF, Ne, BH, and CH+ from ab initio calculations: Systematic studies of electron correlation, basis set errors, and vibrational contributions , 1998 .

[45]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[46]  M. Hargittai,et al.  Molecular structure of metal halides. , 2000, Chemical reviews.

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  K. Peterson Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13–15 elements , 2003 .

[49]  Kimihiko Hirao,et al.  Nonlinear optical property calculations of polyynes with long-range corrected hybrid exchange-correlation functionals. , 2008, The Journal of chemical physics.

[50]  D. M. Bishop,et al.  Molecular vibrational and rotational motion in static and dynamic electric fields , 1990 .

[51]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[52]  E. Kumacheva,et al.  Polyferrocenes: metallopolymers with tunable and high refractive indices. , 2004, Chemical communications.

[53]  I. Manners Polyferrocenylsilanes: metallopolymers for electronic and photonic applications , 2002 .

[54]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[55]  K. Moorthi,et al.  Polymer Optical Constants from Long-Range Corrected DFT Calculations. , 2016, The journal of physical chemistry. B.

[56]  John M Herbert,et al.  Simultaneous benchmarking of ground- and excited-state properties with long-range-corrected density functional theory. , 2008, The Journal of chemical physics.

[57]  Xiang-Qun Xie,et al.  Fast approaches for molecular polarizability calculations. , 2007, The journal of physical chemistry. A.

[58]  Kirk A Peterson,et al.  Systematically convergent basis sets for transition metals. I. All-electron correlation consistent basis sets for the 3d elements Sc-Zn. , 2005, The Journal of chemical physics.

[59]  Shinji Ando,et al.  Optically Transparent Sulfur-Containing Polyimide−TiO2 Nanocomposite Films with High Refractive Index and Negative Pattern Formation from Poly(amic acid)−TiO2 Nanocomposite Film , 2009 .

[60]  G. Armatas,et al.  Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation. , 2009, Nature materials.

[61]  H. Dislich Plastics as Optical Materials , 1979 .

[62]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[63]  Alan R. Katritzky,et al.  Correlation and Prediction of the Refractive Indices of Polymers by QSPR , 1998, J. Chem. Inf. Comput. Sci..

[64]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[65]  Distributed polarizabilities using the topological theory of atoms in molecules , 1994 .

[66]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .

[67]  A. Zimmermann,et al.  What is the lowest refractive index of an organic polymer , 1991 .

[68]  C. Tarrio,et al.  Local fields in solids: microscopic aspects for dielectrics , 1992 .

[69]  D. Balzarini,et al.  Density Dependence of Lorentz–Lorenz Coefficient for Sulfur Hexafluoride , 1974 .

[70]  George Maroulis,et al.  Electric Dipole Polarizability of As4, a Challenging Problem for Both Experiment and Theory , 1998 .

[71]  A. Lagendijk,et al.  Microscopic Approach to the Lorentz Cavity in Dielectrics , 1997 .

[72]  Jeff R. Hammond,et al.  Accurate dipole polarizabilities for water clusters n=2-12 at the coupled-cluster level of theory and benchmarking of various density functionals. , 2009, The Journal of chemical physics.

[73]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[74]  常田 貴夫,et al.  Density functional theory in quantum chemistry , 2014 .

[75]  K. Moorthi,et al.  Polarizabilities from Long-Range Corrected DFT Calculations , 2014 .

[76]  Dietmar Seyferth Gmelin handbook of inorganic chemistry , 1978 .

[77]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[78]  T. Tsuneda,et al.  Density functional theory for comprehensive orbital energy calculations. , 2013, The Journal of chemical physics.

[79]  U. Hohm,et al.  Experimental and theoretical determination of the dipole-quadrupole and dipole-octopole polarizabilities of the group IV tetrachlorides TiCl4, ZrCl4, and HfCl4. , 2006, The Journal of chemical physics.

[80]  A. Kityk Absorption and fluorescence spectra of heterocyclic isomers from long-range-corrected density functional theory in polarizable continuum approach. , 2012, The journal of physical chemistry. A.

[81]  Okihiro Sugihara,et al.  Refractive index control and Rayleigh scattering properties of transparent TiO2 nanohybrid polymer. , 2009, The journal of physical chemistry. B.