A multivariate FGD technique to improve VaR computation in equity markets

Abstract.It is difficult to compute Value-at-Risk (VaR) using multivariate models able to take into account the dependence structure between large numbers of assets and being still computationally feasible. A possible procedure is based on functional gradient descent (FGD) estimation for the volatility matrix in connection with asset historical simulation. Backtest analysis on simulated and real data provides strong empirical evidence of the better predictive ability of the proposed procedure over classical filtered historical simulation, with a resulting significant improvement in the measurement of risk.

[1]  N. Shephard,et al.  Analysis of high dimensional multivariate stochastic volatility models , 2006 .

[2]  Peter L. Bartlett,et al.  Functional Gradient Techniques for Combining Hypotheses , 2000 .

[3]  J. Friedman Special Invited Paper-Additive logistic regression: A statistical view of boosting , 2000 .

[4]  M. Rothschild,et al.  Asset Pricing with a Factor Arch Covariance Structure: Empirical Estimates for Treasury Bills , 1988 .

[5]  A. McNeil,et al.  Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .

[6]  P. Bühlmann,et al.  Boosting with the L2-loss: regression and classification , 2001 .

[7]  D. Duffie,et al.  An Overview of Value at Risk , 1997 .

[8]  Philippe Jorion Value at risk: the new benchmark for controlling market risk , 1996 .

[9]  P. D. Jongh,et al.  Risk estimation using the normal inverse Gaussian distribution , 2001 .

[10]  Giovanni Barone-Adesi,et al.  VaR without correlations for portfolios of derivative securities , 1999 .

[11]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[12]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[13]  Wen-Ling Lin,et al.  Alternative Estimators for Factor GARCH Models--A Monte Carlo Comparison , 1992 .

[14]  Kevin Dowd,et al.  Beyond Value at Risk: The New Science of Risk Management , 1998 .

[15]  P. Bühlmann,et al.  Volatility estimation with functional gradient descent for very high-dimensional financial time series , 2003 .

[16]  Jeremy Berkowitz,et al.  How Accurate are Value-at-Risk Models at Commercial Banks , 2001 .

[17]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[18]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[19]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[20]  Carol Alexander,et al.  A Primer on the Orthogonal GARCH Model , 2001 .

[21]  M. West,et al.  Bayesian dynamic factor models and variance matrix dis-counting for portfolio allocation , 2000 .

[22]  B. Yu,et al.  Boosting with the L_2-Loss: Regression and Classification , 2001 .

[23]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .